1000 resultados para Séries de potências
Resumo:
We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.
Resumo:
We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Resumo:
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
We consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).
Resumo:
In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Understanding the dynamics of interest rates and the term structure has important implications for issues as diverse as real economic activity, monetary policy, pricing of interest rate derivative securities and public debt financing. Our paper follows a longstanding tradition of using factor models of interest rates but proposes a semi-parametric procedure to model interest rates.
Resumo:
Le but de cette étude était de déterminer la contribution de plusieurs facteurs (le design de la tâche, l’orientation d’angle, la position de la tête et du regard) sur la capacité des sujets à percevoir les différences de formes bidimensionnelles (2-D) en utilisant le toucher haptique. Deux séries d'expériences (n = 12 chacune) ont été effectuées. Dans tous les cas, les angles ont été explorés avec l'index du bras tendu. La première expérience a démontré que le seuil de discrimination des angles 2-D a été nettement plus élevé, 7,4°, que le seuil de catégorisation des angles 2-D, 3,9°. Ce résultat étend les travaux précédents, en montrant que la différence est présente dans les mêmes sujets testés dans des conditions identiques (connaissance des résultats, conditions d'essai visuel, l’orientation d’angle). Les résultats ont également montré que l'angle de catégorisation ne varie pas en fonction de l'orientation des angles dans l'espace (oblique, verticale). Étant donné que les angles présentés étaient tous distribués autour de 90°, ce qui peut être un cas particulier comme dans la vision, cette constatation doit être étendue à différentes gammes d'angles. Le seuil plus élevé dans la tâche de discrimination reflète probablement une exigence cognitive accrue de cette tâche en demandant aux sujets de mémoriser temporairement une représentation mentale du premier angle exploré et de la comparer avec le deuxième angle exploré. La deuxième expérience représente la suite logique d’une expérience antérieure dans laquelle on a constaté que le seuil de catégorisation est modifié avec la direction du regard, mais pas avec la position de la tête quand les angles (non visibles) sont explorés en position excentrique, 60° à la droite de la ligne médiane. Cette expérience a testé l'hypothèse que l'augmentation du seuil, quand le regard est dirigé vers l'extrême droite, pourrait refléter une action de l'attention spatiale. Les sujets ont exploré les angles situés à droite de la ligne médiane, variant systématiquement la direction du regard (loin ou vers l’angle) de même que l'emplacement d'angle (30° et 60° vers la droite). Les seuils de catégorisation n’ont démontré aucun changement parmi les conditions testées, bien que le biais (point d'égalité subjective) ait été modifié (décalage aux valeurs inférieurs à 90°). Puisque notre test avec le regard fixé à l’extrême droite (loin) n'a eu aucun effet sur le seuil, nous proposons que le facteur clé contribuant à l'augmentation du seuil vu précédemment (tête tout droit/regard à droite) doit être cette combinaison particulière de la tête/regard/angles et non l’attention spatiale.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.
Resumo:
Contexte : L’activité physique est une composante centrale du développement physique, psychologique et social de l'enfant, particulièrement au sein d'une société où l'impact de la sédentarité et de l'obésité devient de plus en plus important. Cependant, les trajectoires d’activité physique hors école et leurs déterminants sont peu étudiés et les connaissances sur ce sujet sont limitées. Il est également notoire que les types d’activité physique sont rarement pris en considération. Objectif : Ce mémoire a pour but (a) de déterminer les trajectoires de pratique d’activité physique au cours du développement des enfants (b) de valider l’association entre l’activité physique supervisée et l’activité non supervisée et (c) d’identifier les déterminants au niveau du quartier, de la famille et des caractéristiques individuelles associés aux trajectoires de pratique d’activité physique supervisée et non supervisée. Participants : 1 814 enfants (51% garçons) nés en 1998 ayant participé à l’Étude Longitudinale du Développement des Enfants du Québec (ELDEQ). Les données récoltées proviennent uniquement de leur mère. Mesures : La fréquence de l’activité physique supervisée et non supervisée a été mesurée à quatre reprises alors que les enfants étaient âgés entre 5 et 8 ans. Les déterminants ainsi que les variables contrôles ont été mesurés alors que les enfants avaient 4 ou 5 ans. Résultats : Trois trajectoires d’activité physique supervisée et non supervisée ont été identifiées. Les résultats suggèrent que les trajectoires d’activité physique supervisée, représentant respectivement 10%, 55.3% et 34.7% de la population, sont relativement stables même si elles subissent une légère augmentation avec le temps. Des trois trajectoires d’activité physique non supervisée représentant respectivement 14.1%, 28.1% et 57.8% de la population, une augmente considérablement avec le temps alors iv que les deux autres sont stables. Ces deux séries de trajectoires ne sont pas associées significativement entre elles. L’éducation de la mère, l’entraide dans le quartier de résidence ainsi que la prosocialité des enfants déterminent les deux types d’activité physique. La suffisance de revenu et la pratique sportive de la mère sont associées seulement aux trajectoires d’activité physique supervisée. La famille intacte discrimine l’appartenance aux trajectoires d’activité physique non supervisée. Conclusion : Premièrement, la pratique de l’activité physique est relativement stable entre 5 et 8 ans. Deuxièmement, l’activité physique supervisée ainsi que l’activité physique non supervisée sont deux pratiques qui se développent différemment et qui possèdent leurs propres déterminants. Troisièmement, une approche écologique permet de mieux saisir la complexité de ces deux processus.