996 resultados para Ryanodine Receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R silenced worms also display an increase in migration rate. This work demonstrates that Gp30 flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida, and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. © 2013 Atkinson et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-?B. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several authors have shown that neutrophil generation of reactive oxygen species (ROS) declines with advancing age. Similar changes have also been suggested in monocytes. In both cases alterations in second messenger activity have been implicated as the most likely explanation for these observations. The aim of this study was to investigate the effect of age on phagocyte ROS generation, stimulated by the direct activation of protein kinase C (PKC). Venous blood was drawn from normal healthy subjects, cells were separated on a double density gradient into mononuclear and polymorphonuclear (pmn) cells. Phorbol myristate acetate (PMA) was employed as a cell stimulus. Superoxide generation was measured by cytochrome c reduction and myeloperoxidase (MPO) products by measurement of peak luminol chemiluminescence (CL). Fifty-eight subjects, 25 males and 33 females, were studied, median age 49 years (range 26-88 years). Polymorphonuclear cell superoxide generation was significantly higher in males and there was a trend towards higher pmn MPO product generation in males. Using Spearman's ranked correlation coefficient, monocyte superoxide generation was negatively correlated with age (r = -0.473, P <0.001). No changes in the generation of MPO products was found. There were also trends towards a negative correlation of pmn cytochrome c reduction and peak luminol CL with age in males but not females. Since PMA directly activates protein kinase C, reduced monocyte superoxide generation with increasing age appears to be related to alterations in the ROS generating system downstream of the cell receptor. Impaired monocyte superoxide generation may have implications for non-specific defence against certain infections and early tumour growth in the elderly. Factors underlying these changes in monocyte function therefore require further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the changes in some of the cellular components of the immune system and the activity of the cytokine interleukin 2, important for immune activation and lymphocyte proliferation, were measured in a large cross-sectional study of all age groups including octogenarian and nonagenarian subjects. In 206 apparently well community-living subjects, the absolute lymphocyte count and T and B cell numbers fell a little in old and very old subjects. Within the T cell compartment, helper/inducer CD4+ T cells, together with their subsets identified as 'naive' (CD4+/CD45RA+) and 'memory' (CD4+/CD45RO+) cells, also showed a decline with increased age. The suppressor/cytotoxic CD8+ subset showed no age-related change. The levels of the cytokine interleukin 2 were very low in octogenarian and nonagenarian subjects, while the soluble interleukin 2 receptor levels increased with increasing age. The interleukin 2 levels were associated with number and percentage of the 'memory' (CD4+/CD45RO+) subset of T cells which mediates the host response to previously met antigens. Since the interleukin 2 values were very low in the oldest groups and were associated with a reduced 'memory' (CD4+/CD45RO+) compartment, this suggests a possible mechanism of why the very elderly subject is more susceptible to morbidity and mortality from infectious or other agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using 1-(4-styryl)-3-(3-nitrophenyl)urea as host monomer for the imprinting of Z-(D or L)-Glu, a polymeric receptor exhibiting strong enantioselectivity and a change in color intensity upon binding of the guest was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Near 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or ß-arrestin-dependent signalling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2RG) or recruiting ß-arrestin2 (CCK2Rß) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150,013X), acted as a high affinity competitive antagonist on CCK2RG but was nearly inefficient as inhibitor of CCK2Rß. Several structural elements on both GV150,013X and in CCK2R binding cavity, which hinder binding of GV150,013X only to the CCK2Rß were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulphur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2Rß state. These data establish structural evidences for distinct conformations of a 7TMR associated with ß-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In animal models, variations in early maternal care are associated with differences in hypothalamic-pituitary-adrenal(HPA) stress response in the offspring, mediated via changes in the epigenetic regulation of glucocorticoid receptor (GR) gene (Nr3c1) expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NF-kB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early in?ammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-kB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identi?ed 17 kinases that when targeted by siRNA restored IL-1b-dependent NF-kB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)- phosphatidylinositol 3-OH kinase (PI3K)–AKT–PAK4–ERK–GSK3b signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-kB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR–
PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. Our efforts to identify the bacterial factor(s) responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence
suggesting that CPS could mediate the activation of EGFR. Supporting this notion, puri?ed CPS did activate EGFR as well as the EGFR-dependent PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4–MyD88–c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

fA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. fA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also fA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous fA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully fA1122 resistant. Our data thus conclusively demonstrated that the fA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.