953 resultados para Rt-Pcr
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O LMV ocorre em todo o mundo e é considerado um dos patógenos mais importantes para a cultura da alface. de acordo com a habilidade em contornar os genes de resistência mo1¹ e mo1² encontrados em alface, os isolados de LMV podem ser dividos em dois sub-grupos: LMV-Most, capazes de contornar a resistência propiciada por estes genes e de serem transmitidos pela semente nestas cutivares, e LMV-Common, que não são capazes de causar sintomas nestes cultivares, além de serem transmitidos pela semente somente em cultivares suscetíveis. Para avaliar a ocorrência destes dois tipos de isolados de LMV foram coletadas, durante 2002-2005, amostras de alface com sintomas de mosaico em áreas de produção de alface comercial das regiões de Campinas, Mogi das Cruzes e Bauru no estado de São Paulo. O RNA total foi utilizado para detecção por RT-PCR utilizando-se oligonucleotídeos universais para LMV que amplificam a porção N-terminal variável da capa protéica, localizada no terminal 3´do genoma. As amostras positivas foram analisadas por um segundo primer que amplifica um fragmento da região central (CI-VPg) do genoma viral. Um total de 1362 amostras foram avaliadas, tendo sido detectado o LMV em 504 amostras (37,29%). O LMV-Common prevaleceu em variedades suscetíveis (77,3%). O LMV-Most foi encontrado frequentemente associado a variedades portadoras do gene de tolerância mo1¹. Apesar da existência dos LMV-Most capazes de contornar a resistência em alface, estes não predominam em nossa condições.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The piezoelectric quartz crystal resonators modified with oligonucleotide probes were used for detection of hepatitis C virus (HCV) in serum. The gold electrodes on either rough or smooth surface crystals were modified with a self-assembled monolayer of cystamine. After activation with glutaraldehyde, either avidin or streptavidin were immobilized and used for attachment of biotinylated DNA probes (four different sequences). Piezoelectric biosensors were used in a flow-through setup for direct monitoring of DNA resulting from the reverse transcriptase-linked polymerase chain reaction (RT-PCR) amplification of the original viral RNA. The samples of patients with hepatitis C were analyzed and the results were compared with the standard RT-PCR procedure (Amplicor test kit of Roche, microwell format with spectrophotometric evaluation). The piezoelectric hybridization assay was completed in 10 min and the same sensing surface was suitable for repeated use. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Blastocrithidia culicis is a protozoan of the family Trypanosomatidae. It is a parasite of insects, but the presence of bacteriumlike endosymbionts in its cytoplasm led some investigators to study this protozoan. This trypanosomatid does not infect humans and although it is phylogenetically distant from Trypanosoma cruzi, it presents many morphological characteristics, which are similar. In previous studies our group showed the presence of a L27 ribosomal protein in T cruzi (named TcrL27) using a RT-PCR, which also resulted in the cloning, sequencing and expression of an unexpected ribosomal protein, L17, in Blastocrithidia culicis (BcL17). In this paper, Western blot analysis demonstrated that the anti-BcL17 antibody recognizes the presence of the same ribosomal protein either in Blastochritidia culicis and T. cruzi nuclear extracts. Besides, two similar bands (40 and 47 kDa) appeared also in T. cruzi isolated ribosomal proteins and B. culicis nuclear extract corroborating with the findings showed in the phylogenetic reconstruction. With respect to their localization within the ribosome, both the L17 and L27 ribosomal proteins appear to belong to the peptidyl-transferase site, and are therefore part of the key step in protein synthesis. Both ribosomal proteins bind spiramycin derivatives, being therefore compounds of the macrolides connection sites in the ribosome. These findings would open a possibility to better evaluate this issue.
Resumo:
Recent advances have accelerated the development of biosensors for the analysis of specific gene sequences. In this kind of biosensor, a DNA probe is immobilized on a transducer and the hybridization with the target DNA is monitored by suitable methodology. In the present work, the streptavidin (STA) was encapsulated in thin films siloxane-poly(propylene oxide) hybrids prepared by sol-gel method and deposited on the graphite electrode surface by dip-coating process. Biotinylated 18-mer probes were immobilized through STA and a novel amperometric DNA biosensor for the detection and genotyping of the hepatitis C virus (genotypes 1, 2A/C, 2B and 3) is described. The HCV RNA from serum was submitted to reverse transcriptase-linked polymerase chain reaction (RT-PCR) and biotin-labeled cDNA was obtained. Thus, the cDNA was hybridized to the target-specific oligonucleotide probe immobilized on the graphite electrode surface and following the avidin-peroxidase conjugate was added. The enzymatic response was investigated by constant potential amperometry at -0.45 V versus Ag/AgCl using H2O2 and KI solutions. HCV RNA negative and positive controls and positive samples of sera patients were analyzed and the results were compared to commercial kit. The proposed methodology appeared to be suitable and convenient tool for streptavidin immobilization and diagnose of HCV disease. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Plants are organisms sessile and because of this they are susceptible to genotoxic effects due to environmental exposure such as light [including ultraviolet (UV)], heat, drought and chemicals agents. Therefore, there are differents pathways in order to detect a lesion and correct. These pathways are not well known in plants. The MutM/Fpg protein is a DNA glycosylase that is responsible for detect and correct oxidative lesions. In the sugarcane genome, it was found two possible cDNAs that had homology to this protein: scMUTM1 and scMUTM2. The aim of this work was to characterize the role of these cDNAs in plants. In order to do this, the expression level after oxidative stress was evaluated by semiquantitative RT-PCR. Another point analyzed in order to obtain the full-length gene, it was to use a sugarcane genomic library that was hybridized with both cDNAs as a probe. It was found two clones that will bought and sequenced. The promoter region was also cloned. It was obtained sequences only for scMUTM2 promoter region. The sequences obtained were divided into six groups. It was found regulatory motifs such as TATA-box, CAAT-box, oxidative stress element response and regulatory regions that response to light. The other point analyzed was to characterize the N-terminal region by PCR constructs. These constructs have deletions at 5 region. These sequences were introduce into Escherichia coli wild type strain (CC104) and double mutant (CC104mutMmutY). The results showed that proteins with deletions of scMUTM1 N-terminal region were able to complement the Fpg and MutY-glycosylase deficiency in CC104 mutMmutY reducing the spontaneous mutation frequency
Resumo:
We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2), phospholamban (PLB), and ryanodine channel (RYR2) mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats) or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 +/- 0.48 vs food-restricted group = 4.84 +/- 0.33, P < 0.01). The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 +/- 0.44 vs food-restricted group = 7.96 +/- 0.45, and control = 1.52 +/- 0.06 vs food-restricted group = 1.53 +/- 0.10, respectively). Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.
Resumo:
Heart failure is associated with a skeletal muscle myopathy with cellular and extracellular alterations. The hypothesis of this investigation is that extracellular changes may be associated with enhanced mRNA expression and activity of matrix metalloproteinases (MMP). We examined MMP mRNA expression and MMP activity in Soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) muscles of young Wistar rat with monocrotaline-induced heart failure. Rats injected with saline served as age-matched controls. MMP2 and MMP9 mRNA contents were determined by RT-PCR and MMP activity by electrophoresis in gelatin-containing polyacrylamide gels in the presence of SDS under non-reducing conditions. Heart failure increased MMP9 mRNA expression and activity in SOL, EDL and DIA and MMP2 mRNA expression in DIA. These results suggest that MMP changes may contribute to the skeletal muscle myopathy during heart failure.
Resumo:
Osteoclastogenesis may be regulated via activation of the RANK/RANKL (receptor activator of nuclear factor-kappa B/ receptor activator of nuclear factor-kappa B ligand) system, which is mediated by osteoblasts. However, the bone loss mechanism induced by T3 (triiodothyronine) is still controversial. In this study, osteoblastic lineage rat cells (ROS 17/2.8) were treated with T3 (10(-8) M 10(-9) 10 M, and 10(-10) M), and RANKL mRNA (messenger RNA) expression was measured by semiquantitative RT-PCR. Our results show that T3 concentrations used did not significantly enhance RANKL expression compared to controls without hormone treatment. This data suggests that other mechanisms, unrelated to the RANK/RANKL system, might be to activate osteoclast differentiation in these cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)