984 resultados para Robertus, de Sorbona, 1201-1274
Resumo:
This paper overviews the main conceptual frameworks for understanding participatory approaches to land use planning and explores their utility in analysing the experience of a recent regional planning exercise in South East England. In particular it examines the contribution of recent ‘New Institutionalist’ ideas to our understanding of participatory processes and the implications for practice of using them to build strategies of public involvement in policy-making and implementation.
Resumo:
As the challenges and opportunities posed by climate change become increasingly apparent, the need for facilitating successful adaptation and enhancing adaptive capacity within the context of sustainable development is clear. With adaptation high on the agenda, the notion of limits and barriers to adaptation has recently received much attention within both academic and policymaking spheres. While emerging literature has been quick to depict limits and barriers in terms of natural, financial, or technologic processes, there is a clear shortfall in acknowledging social barriers to adaptation. It is against such a backdrop that this paper sets out to expose and explore some of the underlying features of social barriers to adaptation, drawing on insights from two case studies in the Western Nepal. This paper exposes the significant role of cognitive, normative and institutional factors in both influencing and prescribing adaptation. It explores how restrictive social environments can limit adaptation actions and influence adaptive capacity at the local level, particularly for the marginalised and socially excluded. The findings suggest a need for greater recognition of the diversity and complexity of social barriers, strategic planning and incorporation at national and local levels, as well as an emphasis on tackling the underlying drivers of vulnerability and social exclusion.
Resumo:
The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.
Resumo:
More than 30 epiphytic lichens, collected in Agadir (Morroco) and along a 150-km transect from the Atlantic Ocean eastward, were analyzed for their metal content and lead isotopic composition. This dataset was used to evaluate atmospheric metal contamination and the impact of the city on the surrounding area. The concentrations of Cu, Pb, and Zn (average ± 1 SD) were 20.9 ± 15.2 μg g−1, 13.8 ± 9.0 μg g−1, and 56.6 ± 26.6 μg g−1, respectively, with the highest values observed in lichens collected within the urban area. The 206Pb/207Pb and 208Pb/207Pb ratios in the lichens varied from 1.146 to 1.186 and from 2.423 to 2.460, respectively. Alkyllead-gasoline sold in Morocco by the major petrol companies gave isotopic ratios of 206Pb/207Pb = 1.076–1.081 and 208Pb/207Pb = 2.348–2.360. These new, homogeneous values for gasoline-derived lead improve and update the scarce isotopic database of potential lead sources in Morocco, and may be of great value to future environmental surveys on the presence of lead in natural reservoirs, where it persists over time (e.g., soils and sediments). The interest of normalizing metal concentrations in lichens to concentrations of a lithogenic element is demonstrated by the consistency of the results thus obtained with lead isotopic ratios. Leaded gasoline contributed less than 50% of the total amount of lead accumulated in lichens, even in areas subject to high vehicular traffic. This strongly suggests that the recent banishment of leaded gasoline in Morocco will not trigger a drastic improvement in air quality, at least in Agadir.
Resumo:
Parkinson's disease (PD) is characterized in part by the presence of alpha-synuclein (alpha-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the alpha-synuclein gene (SNCA) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type alpha-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of alpha-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the alpha-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+](i) in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of alpha-synuclein. However, only WT alpha-syn transfected cells displayed significantly impaired viability. Our findings suggest that alpha-syn regulates Ca2+ entry pathways and, consequently, that abnormal alpha-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.
Resumo:
We analyze the large time behavior of a stochastic model for the lay down of fibers on a moving conveyor belt in the production process of nonwovens. It is shown that under weak conditions this degenerate diffusion process has a unique invariant distribution and is even geometrically ergodic. This generalizes results from previous works [M. Grothaus and A. Klar, SIAM J. Math. Anal., 40 (2008), pp. 968–983; J. Dolbeault et al., arXiv:1201.2156] concerning the case of a stationary conveyor belt, in which the situation of a moving conveyor belt has been left open.
Resumo:
Discussion of the organisation of Annibale Carracci's workshop in his later years
Resumo:
Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].
Resumo:
The neuropeptide substance P and its receptor NK1 have been implicated in emotion, anxiety and stress in preclinical studies. However, the role of NK1 receptors in human brain function is less clear and there have been inconsistent reports of the value of NK1 receptor antagonists in the treatment of clinical depression. The present study therefore aimed to investigate effects of NK1 antagonism on the neural processing of emotional information in healthy volunteers. Twenty-four participants were randomized to receive a single dose of aprepitant (125 mg) or placebo. Approximately 4 h later, neural responses during facial expression processing and an emotional counting Stroop word task were assessed using fMRI. Mood and subjective experience were also measured using self-report scales. As expected a single dose of aprepitant did not affect mood and subjective state in the healthy volunteers. However, NK1 antagonism increased responses specifically during the presentation of happy facial expressions in both the rostral anterior cingulate and the right amygdala. In the emotional counting Stroop task the aprepitant group had increased activation in both the medial orbitofrontal cortex and the precuneus cortex to positive vs. neutral words. These results suggest consistent effects of NK1 antagonism on neural responses to positive affective information in two different paradigms. Such findings confirm animal studies which support a role for NK1 receptors in emotion. Such an approach may be useful in understanding the effects of novel drug treatments prior to full-scale clinical trials.
Resumo:
Aim To develop a brief, parent-completed instrument (‘ERIC’) for detection of cognitive delay in 10-24 month-olds born preterm, or with low birth weight, or with perinatal complications, and to establish its diagnostic properties. Method Scores were collected from parents of 317 children meeting ≥1 inclusion criteria (birth weight <1500g; gestational age <34 completed weeks; 5-minute Apgar <7; presence of hypoxic-ischemic encephalopathy) and meeting no exclusion criteria. Children were assessed for cognitive delay using a criterion score on the Bayley Scales of Infant and Toddler Development Cognitive Scale III1 <80. Items were retained according to their individual associations with delay. Sensitivity, specificity, Positive and Negative Predictive Values were estimated and a truncated ERIC was developed for use <14 months. Results ERIC detected 17 out of 18 delayed children in the sample, with 94.4% sensitivity (95% CI [confidence interval] 83.9-100%), 76.9% specificity (72.1-81.7%), 19.8% positive predictive value (11.4-28.2%); 99.6% negative predictive value (98.7-100%); 4.09 likelihood ratio positive; and 0.07 likelihood ratio negative; the associated Area under the Curve was .909 (.829-.960). Interpretation ERIC has potential value as a quickly-administered diagnostic instrument for the absence of early cognitive delay in preterm or premature infants of 10-24 months, and as a screen for cognitive delay. Further research may be needed before ERIC can be recommended for wide-scale use.
Resumo:
A number of case studies of large, transient, field-aligned ion flows in the topside ionosphere at high-latitudes have been reported, showing that these events occur during periods of frictional heating and/or intense particle precipitation. This study examines the frequency of occurrence of such events for the altitude range 200–500 km, based on 3 years of incoherent scatter data. Correlations of the upgoing ion flux at 400 km with ion and electron temperatures at lower altitudes are presented, together with a discussion of possible mechanisms for the production of such large flows. The influence of low-altitude electron precipitation on the production of these events is also considered.