937 resultados para Rigid
Resumo:
The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs.
Resumo:
The ability to render objects invisible with a cloak that fits all objects and sizes is a long-standing goal for optical devices. Invisibility devices demonstrated so far typically comprise a rigid structure wrapped around an object to which it is fitted. Here we demonstrate smart metamaterial cloaking, wherein the metamaterial device not only transforms electromagnetic fields to make an object invisible, but also acquires its properties automatically from its own elastic deformation. The demonstrated device is a ground-plane microwave cloak composed of an elastic metamaterial with a broad operational band (10-12 GHz) and nearly lossless electromagnetic properties. The metamaterial is uniform, or perfectly periodic, in its undeformed state and acquires the necessary gradient-index profile, mimicking a quasi-conformal transformation, naturally from a boundary load. This easy-to-fabricate hybrid elasto-electromagnetic metamaterial opens the door to implementations of a variety of transformation optics devices based on quasi-conformal maps.
Resumo:
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Resumo:
The space–time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham–Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as designing a targeted drug delivery system.
Resumo:
The computational modelling of extrusion and forging processes is now well established. There are two main approaches: Lagrangian and Eulerian. The first has considerable complexities associated with remeshing, especially when the code is parallelised. The second approach means that the mould has to be assumed to be entirely rigid and this may not be the case. In this paper, a novel approach is described which utilises finite volume methods on unstructured meshes. This approach involves the solution of free surface non-Newtonian fluid flow equations in an Eulerian context to track the behaviour of the workpiece and its extrusion/forging, and the solution of the solid mechanics equations in the Lagrangian context to predict the deformation/stress behaviour of the die. Test cases for modelling extrusion and forging problems using this approach will be presented.
Resumo:
A rigid wall model has been used widely in the numerical simulation of rail vehicle impacts. Finite element impact modelling of rail vehicles is generally based on a half-width and full-length or half-length structure, depending on the symmetry. The structure and components of rail vehicles are normally designed to cope with proof loading to ensure adequate ride performance. In this paper, the authors present a study of a rail vehicle with driving cab focused on improving the modelling approach and exploring the intrinsic structural weaknesses to enhance its crashworthiness. The underpinning research used finite element analysis and compared the behaviour of the rail vehicle in different impact scenarios. It was found that the simulation of a rigid wall impact can mask structural weaknesses; that even a completely symmetrical impact may lead to an asymmetrical result; that downward bending is an intrinsic weakness of conventional rail vehicles and that a rigid part of the vehicle structure, such as the body bolster, may cause uncoordinated deformation and shear fracture between the vehicle sections. These findings have significance for impact simulation, the full-scale testing of rail vehicles and rail vehicle design in general.
Resumo:
In this paper, the authors present a crashworthiness assessment and suggestions for modification of a conventionally designed rail vehicle with a driving cab (cab car). The analytical approach, based on numerical analysis, consisted of two stages. Firstly, the crashworthiness of the cab car was assessed by simulating a collision between the cab car and a rigid wall. Then, after analysing structural weaknesses, the design of the cab car was modified and simulated again in the same scenario. It was found that downward bending is an intrinsic weakness in conventional rail vehicles and that jackknifing is a main form of failures in conventional rail vehicle components. The cab car, as modified by the authors, overcomes the original weaknesses and shows the desired progressive collapse behaviour in simulation. The conclusions have general relevance for other studies but more importantly, point to the need for a rethink of some aspects of rail vehicle design.
Resumo:
This study utilized the latest computing techniques to analyze the driver's cab of a railroad vehicle colliding with deformable objects. It explored the differences between a collision with a deformable object and a collision with a rigid object. It also examined the differences between a collision with a large simple shaped object and a collision with a life-like object. Tools of analysis included vehicle dynamics analysis and finite element analysis.
Resumo:
In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Resumo:
Antecedentes. Pes Adulto planus (pie plano) es un problema común encontrado por muchos profesionales de la salud. A pesar de la percepción de que el pie plano puede causar dolor y deteriorar su función, la disponibilidad y el uso generalizado de diversos tratamientos, no hay consenso sobre la estrategia óptima de tratamiento. Objetivo. Evaluar la efectividad de las intervenciones conservadoras (no quirúrgicos) para pie plano en los adultos. Método. Se realizó una búsqueda sistemática de la literatura. Esto incluye: el Registro Cochrane Central de Ensayos Controlados; los Juicios CMSG Especializados Registro; una búsqueda electrónica se realizó utilizando MEDLINE (1960 a junio de 2012), EMBASE (1980 a junio de 2012), y CINAHL (1982 - junio de 2012). Revistas especializadas, listas de referencias de ensayos y artículos de revisión se realizaron búsquedas manuales. Criterios de selección: Ensayos aleatorios o cuasialeatorios de intervenciones de tratamiento para el pie plano en los adultos. Se excluyeron los ensayos que incluyeron patologías específicas como el dolor plantar del talón, las fracturas por sobrecarga de los metatarsianos, disfunción del tendón tibial posterior-, fracturas de tobillo, patologías del pie reumatoide, enfermedades neuromusculares y las complicaciones del pie diabético. Recopilación y análisis de datos: Dos autores seleccionaron de forma independiente los resultados de la búsqueda para identificar a aquellos que satisfacen los criterios de inclusión y evaluaron la calidad de los incluidos mediante una lista de control basado en la Evaluación de la Colaboración Cochrane de Riesgo. Esta herramienta se centró en el riesgo de la selección, el rendimiento, la detección, la heterogeneidad y el sesgo de notificación. Resultados. Cuatro ensayos, con 140 sujetos, cumplieron los criterios de inclusión para la revisión. Los cuatro fueron juzgados como de alto riesgo de sesgo en al menos un área, y también estaban en riesgo de sesgo incierto en al menos otra zona. Todos anotaron altamente en relación al sesgo de deserción, debido al corto seguimiento tiempos y diseños experimentales utilizados. Los datos no se agruparon debido al alto nivel de heterogeneidad identificada en las intervenciones evaluadas, los participantes seleccionados y medir los resultados. Los resultados de un estudio sugieren que después de cuatro semanas de uso ortesis puede resultar en una mejora significativa en vaivén lateral medio, y pueden resultar en una mejor, aunque no significativa, en general relacionados con la calidad de vida de los pies (Roma 2004). Un estudio (Redmond 2009) sugiere que su efecto sobre la distribución de la presión plantar en el pie puede no depender de si son personalizados o dispositivos prefabricados. Aunque este estudio se identificaron cambios significativos en algunas variables de presión plantar tanto con la costumbre y dispositivos prefabricados, otro (Esterman 2005) no encontró ningún efecto significativo de longitud ¾ ortesis prefabricadas sobre el dolor, la incidencia de lesiones, salud pie o de calidad de vida en un grupo de reclutas de la fuerza aérea. El cuarto estudio (Jung 2009) sugiere que el ejercicio de los músculos intrínsecos del pie puede mejorar el efecto de las ortesis. A pesar de estos resultados, ya que cada estudio incurrió riesgo de sesgo en al menos un área no se pueden sacar conclusiones
Resumo:
On the basis of histamine release from rat peritoneal mast cells, an octadecapeptide was isolated from the skin extract of the Northern Leopard frog (Rana pipiens), This peptide was purified to homogeneity using reversed-phase high performance liquid chromatography and found to have the following primary structure by Edman degradation and pyridylethylation: LVRGCWTKSYPPKPCFVR, in which Cys(5) and Cys(15) are disulfide bridged. The peptide was named peptide leucine-arginine (pLR), reflecting the N- and C-terminal residues. Molecular modeling predicted that pLR possessed a rigid tertiary loop structure with flexible end regions, pLR was synthesized and elicited rapid, noncytolytic histamine release that had a a-fold greater potency when compared with one of the most active histamine-liberating peptides, namely melittin, pLR was able to permeabilize negatively charged unilamellar lipid vesicles but not neutral vesicles, a finding that was consistent with its nonhemolytic action, pLR inhibited the early development of granulocyte macrophage colonies from bone marrow stem cells but did not induce apoptosis of the end stage granulocytes, i,e. mature neutrophils, pLR therefore displays biological activity with both granulopoietic progenitor cells and mast cells and thus represents a novel bioactive peptide from frog skin.
Resumo:
Gel filtration on soft gels has been employed for over 40 years for the separation, desalting and molecular weight estimation of peptides and proteins. Technical improvements have given rise to high-performance size-exclusion chromatography (HPSEC) on rigid supports, giving more rapid run times and increased resolution. Initially, these packings were more suitable for the separation of proteins than of peptides, but supports that operate in the fractionation range
Resumo:
[M2L3] coordination cages and linear [M2L3]infinity polymers of the rigid, bridging diphosphines bis(diphenylphosphino)acetylene (dppa) and trans-1,2-bis(diphenylphosphino)ethylene (dppet) with silver(I) salts have been investigated in the solution and solid states. Unlike flexible diphosphines, 1:1 dppa/AgX mixtures do not selectively form discrete [Ag2(diphos)2(X)2] macrocycles; instead dynamic mixtures of one-, two- and three-coordinate complexes are formed. However, 3:2 dppa/AgX ratios (X = SbF6. BF4, O3SCF3 or NO3) do lead selectively to new [M2L3] triply bridged cage complexes [Ag2(dppa)3(X)2] 1a-d (X = SbF6 a, BF4 b, O3SCF3 c, NO3 d), which do not exhibit Ag-P bond dissociation at room temperature on the NMR time scale (121 MHz). Complexes la-d were characterised by X-ray crystallography and were found to have small internal cavities, helical conformations and multiple intramolecular aromatic interactions. The nucleophilicity of the anion subtly influences the cage shape: Increasing nucleophilicity from SbF6 (1a) through BF4 (1b) and O3SCF3 (1c) to NO3 (1d) increases the pyramidal distortion at the AgP3 centres, stretching the cage framework (with Ag...Ag distances increasing from 5.48 in 1a to 6.21 A in 1d) and giving thinner internal cavities. Crystal packing strongly affected the size of the helical twist angle, and no correlation between this parameter and the Ag-Ag distance was observed. When crystalline 1c was stored in its supernatant for 16 weeks, conversion occured to the isostoichiometric [M2L3]infinity coordination polymer [Ag(dppa)2Ag(dppa)(O3SCF3)2]infinity (1c'). X-ray crystallography revealed a structure with ten-membered Ag2(dppa)2 rings linked into infinite one-dimensional chains by a third dppa unit. The clear structural relationship between this polymer and the precursor cage 1c suggests a novel example of ring-opening polymerisation. With dppet, evidence for discrete [M2L3] cages was also found in solution, although 31P NMR spectroscopy suggested some Ag-P bond dissociation. On crystallisation, only the corresponding ring-opened polymeric structures [M2L3]infinity could be obtained. This may be because the greater steric bulk of dppet versus dppa destabilises the cage and favours the ring-opening polymerisation.
Resumo:
The vibrated stone column technique is an economical and environmentally friendly process that treats weak ground to enable it to withstand low to moderate loading conditions. The performance of the treated ground depends on various parameters such as the strengths of the in-situ and backfill materials, and the spacing, length and diameter of the columns. In practice, vibrated stone columns are frequently used for settlement control. Studies have shown that columns can fail by bulging, bending, punching or shearing. These failure mechanisms are examined in this paper. The study involved a series of laboratory model tests on a consolidated clay bed. The tests were carried out using two different materials: (a) transparent material with ‘clay like’ properties, and (b) speswhite kaolin. The tests on the transparent material have, probably for the first time, permitted visual examination of deforming granular columns during loading. They have shown that bulging was significant in long columns, whereas punching was prominent in shorter columns. The presence of the columns also greatly improved the load-carrying capacity of the soft clay bed. However, columns longer than about six times their diameter did not lead to further increases in the load-carrying capacity. This suggests that there is an optimum column length for a given arrangement of stone columns beneath a rigid footing.