994 resultados para Right half plane zero
Resumo:
Simulations of the last 500 yr carried out using the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3) with anthropogenic and natural (solar and volcanic) forcings have been analyzed. Global-mean surface temperature change during the twentieth century is well reproduced. Simulated contributions to global-mean sea level rise during recent decades due to thermal expansion (the largest term) and to mass loss from glaciers and ice caps agree within uncertainties with observational estimates of these terms, but their sum falls short of the observed rate of sea level rise. This discrepancy has been discussed by previous authors; a completely satisfactory explanation of twentieth-century sea level rise is lacking. The model suggests that the apparent onset of sea level rise and glacier retreat during the first part of the nineteenth century was due to natural forcing. The rate of sea level rise was larger during the twentieth century than during the previous centuries because of anthropogenic forcing, but decreasing natural forcing during the second half of the twentieth century tended to offset the anthropogenic acceleration in the rate. Volcanic eruptions cause rapid falls in sea level, followed by recovery over several decades. The model shows substantially less decadal variability in sea level and its thermal expansion component than twentieth-century observations indicate, either because it does not generate sufficient ocean internal variability, or because the observational analyses overestimate the variability.
Resumo:
It has been previously demonstrated that extensive activation in the dorsolateral temporal lobes associated with masking a speech target with a speech masker, consistent with the hypothesis that competition for central auditory processes is an important factor in informational masking. Here, masking from speech and two additional maskers derived from the original speech were investigated. One of these is spectrally rotated speech, which is unintelligible and has a similar (inverted) spectrotemporal profile to speech. The authors also controlled for the possibility of “glimpsing” of the target signal during modulated masking sounds by using speech-modulated noise as a masker in a baseline condition. Functional imaging results reveal that masking speech with speech leads to bilateral superior temporal gyrus (STG) activation relative to a speech-in-noise baseline, while masking speech with spectrally rotated speech leads solely to right STG activation relative to the baseline. This result is discussed in terms of hemispheric asymmetries for speech perception, and interpreted as showing that masking effects can arise through two parallel neural systems, in the left and right temporal lobes. This has implications for the competition for resources caused by speech and rotated speech maskers, and may illuminate some of the mechanisms involved in informational masking.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.