978 resultados para Resource sharing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mining/quarrying industry is a sector of industry where there are very few Life Cycle Assessment (LCA) tools, and where the role of LCA has been poorly investigated. A key issue is the integration of three inter-dependent life cycles: Project, Asset and Product. Given the unique features of mining LCAs, this Note from the Field presents a common methodology implemented within the Sustainable Aggregates Resource Management (SARMa) Project (www.sarmaproject.eu) in order to boost adoption of LCA in the aggregate industry in South Eastern Europe. The proposed methodology emphasises the importance of resource efficiency and recycling in the context of a Sustainable Supply Mix of aggregates for the construction industry. Through its adoption, aggregate producers, recyclers, and governmental planners would gain confidence with LCA tools and conduct consistent and meaningful life cycle analyses of natural and recycled aggregates. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the ParaPhrase project, a new 3-year targeted research project funded under EU Framework 7 Objective 3.4 (Computer Systems), starting in October 2011. ParaPhrase aims to follow a new approach to introducing parallelism using advanced refactoring techniques coupled with high-level parallel design patterns. The refactoring approach will use these design patterns to restructure programs defined as networks of software components into other forms that are more suited to parallel execution. The programmer will be aided by high-level cost information that will be integrated into the refactoring tools. The implementation of these patterns will then use a well-understood algorithmic skeleton approach to achieve good parallelism. A key ParaPhrase design goal is that parallel components are intended to match heterogeneous architectures, defined in terms of CPU/GPU combinations, for example. In order to achieve this, the ParaPhrase approach will map components at link time to the available hardware, and will then re-map them during program execution, taking account of multiple applications, changes in hardware resource availability, the desire to reduce communication costs etc. In this way, we aim to develop a new approach to programming that will be able to produce software that can adapt to dynamic changes in the system environment. Moreover, by using a strong component basis for parallelism, we can achieve potentially significant gains in terms of reducing sharing at a high level of abstraction, and so in reducing or even eliminating the costs that are usually associated with cache management, locking, and synchronisation. © 2013 Springer-Verlag Berlin Heidelberg.