964 resultados para Resolution Electron-microscopy
Resumo:
Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Trypan blue staining for capsulorhexis: Ultrastructural effect on lens epithelial cells and capsules
Resumo:
PURPOSE: To evaluate the ultrastructural effect of trypan blue 0.1% staining for capsulorhexis on lens epithelial cells (LECs) and capsules SETTING: Division of Ophthalmology. University of Sao Paulo, Sao Paulo, Brazil METHODS: Before capsulorhexis, patients were randomly assigned to 1 of 2 groups Trypan blue 0 1% staining was performed in the treatment group No trypan blue was used in the control group Samples of capsules with LECs were fixed and analyzed with routine optical microscopy techniques. immunohistochemistry for beclin-1 expression (a marker of autophagy), terminal deoxynucleotidyl transf erase-mediated dUTP-biotin nick-end labeling to detect apoptosis, and transmission electron microscopy (TEM) Morphometric analyses were performed. and the 2 sets of data were compared. RESULTS: Each group comprised 15 patients Cell death by autophagy and apoptosis was observed in the treatment group but not in the control group The TEM images of subcapsular epithelium cells showed mitochondria` rupture, dilation of the cisterns of the endoplasmic reticulum, increased cytoplasmic and nuclear electron density, and abnormalities in the nuclear profile of trypan blue-stained cells. Morphometric analysis showed statistically significant differences between the 2 groups in the longest nuclear axes and the ratio between the total nuclear perimeter and the cell area (P = .03) The difference in capsule thickness between groups was not significant. CONCLUSION: Trypan blue caused LEC death, which supports the hypothesis that staining with trypan blue 0 1% can help reduce the incidence of posterior capsule pacification after cataract surgery
Resumo:
Animal studies in mice, rats, rabbits, pigs and hens demonstrated that anterior keratocytes undergo programmed cell death or apoptosis after corneal epithelial injury. Many other wound healing changes subsequently follow the keratocyte apoptosis response. This study evaluated early keratocyte apoptosis after corneal epithelial scrape injury in human eyes scheduled for enucleation for malignancy. Two eyes had corneal epithelial scrape 1 h prior to the enucleation and another eye served as a control and had no corneal scrape prior to enucleation. One additional eye was enucleated, washed with balanced salt solution, and then had the corneal epithelium scraped 1 h prior to processing for analysis. Apoptosis was identified by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and confirmed by transmission electron microscopy (TEM). Anterior keratocyte apoptosis was detected in the three corneas that had epithelial scrape injury, but not in the control unwounded cornea. This study confirmed that keratocyte apoptosis is also an early response to corneal epithelial injury in humans and showed that tears are not essential for keratocyte apoptosis to occur in response to epithelial injury. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Materials and Methods: Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nit riding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. Results: There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P < .05). Conclusions: Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:237-244
Resumo:
Background: Systemic sclerosis (SSc) is a multisystem disorder characterized by inflammation, fibrosis and vascular damage. The aim of this study was to evaluate the interactions between basement membrane disruption, endothelial injury and collagen V deposition on the vascular wall, as well as their association with pulmonary function tests in patients with SSc. Method: The endothelial apoptosis was assessed by TUNEL and electron microscopy, and quantified through the point-counting technique. To evaluate basement membrane integrity, laminin immunostaining and electron microscopy were used. Immunofluorescence and morphometric analysis were used to determine the amount of collagen V in the vascular walls in 23 open lung biopsies of patients with SSc without pulmonary hypertension. Normal lung tissue was obtained from five individuals who had died of traumatic injuries. Results: The apoptosis index in SSc was higher in the endothelial cells (13.83 +/- 6.83) when compared with the control (2.51 +/- 2.06) group (P < 0.001) and confirmed by electron microscopy. We observed an important disruption of the basement membrane on the vascular wall shown by discontinuous laminin immunostaining and electron microscopy. An increase in collagen V on the vascular wall of the SSc group was observed (45.28 +/- 13.21), when compared with control group (22.90 +/- 4.13, P < 0.001), and this difference was statistically significant. An inverse correlation was found between vital capacity, forced vital capacity, forced expiratory volume in 1 s, vascular collagen V and endothelial apoptosis (P < 0.05). Conclusions: We conclude that the endothelial apoptosis and vascular collagen V interaction reinforce the vascular pathway in the SSc pathogenesis. Further studies are needed to determine whether this relationship is causal or consequential. Please cite this paper as: Parra ER, Aguiar AC Jr, Teodoro WR, de Souza R, Yoshinari NH and Capelozzi VL. Collagen V and vascular injury promote lung architectural changes in systemic sclerosis. The Clinical Respiratory Journal 2009; 3: 135-142.
Resumo:
Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)
Resumo:
Background/Aims: Hepatocellular carcinoma (HCC) is a well recognized complication of advanced NASH (non-alcoholic steatohepatitis). We sought to produce a rat model of NASH, cirrhosis and HCC. Methods: Adult Sprague-Dawley rats, weighing 250-300 g, were fed a choline-deficient, high trans-fat diet and exposed to DEN in drinking water. After 16 weeks, the animals underwent liver ultrasound (US), sacrifice and assessment by microscopy, immunohistochemistry and transmission electron microscopy (TEM). Results: US revealed steatosis and focal lesions in 6 of 7. All had steatohepatitis defined as inflammation, advanced fibrosis and ballooning with Mallory-Denk bodies (MDB) with frank cirrhosis in 6. Areas of more severe injury were associated with anti-CK19 positive ductular reaction. HCC, present in all, were macro-trabecullar or solid with polyhedral cells with foci of steatosis and ballooned cells. CK19 was positive in single or solid nests of oval cells and in neoplastic hepatocytes. TEM showed ballooning with small droplet fat, dilated endoplasmic reticulum and MDB in non-neoplastic hepatocytes and small droplet steatosis in some cancer cells. Conclusions: This model replicated many features of NASH including steatohepatitis with ballooning, fibrosis, cirrhosis and hepatocellular carcinoma. Oval cell proliferation was evident and the presence anti-CK 19 positivity in the cancer suggests oval cell origin of the malignancy. (C) 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Resumo:
Objective: Gorticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: One hundred twenty-eight BALB/c mice (20-25 g). Interventions: Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Gexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 mu g, ALIp) or intraperitoneally (125 mu g, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALlexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). Measurements and Main Results: At 24 hrs, lung state elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interieukin-6, and transforming growth factor (TGF)-beta levels in bronchoatveolar lavage fluid, as well as tumor necrosis factor (TNF)-alpha, migration inhibitory factor (MIF), interferon (IFN)-gamma, TGF-beta 1 and TGF-beta 2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-alpha, MIF, IFN gamma, and TGF-beta 2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. Conclusions. Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.
Resumo:
We studied the results of chronic oral administration of amiodarone on in vitro lung tissue mechanics, light and electron microscopy. Fifteen Wistar male rats were divided into three groups. In control (CTRL) group animals received saline (0.5 mL/day). In amiodarone (AMIO) groups, amiodarone was administered by gavage at a dose of 175 mg/kg 5 days per week for 6 (6AMIO) or 12 weeks (12AMIO). Lung tissue strips were analyzed 24 h after the last drug administration. Tissue resistance and elastance were higher in 6AMIO and 12AMIO than in CTRL, while hysteresivity was similar in all groups. Total amount of collagen fibers in lung parenchyma increased progressively with the time course of the lesion. However, at 6 weeks there was an increase in the amount of type III collagen fibers, while in 12AMIO mainly type I collagen fibers were found. In our study amiodarone increased lung tissue impedance that was accompanied by matrix remodeling and lesion of type II pneumocytes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
We developed a model of severe allergic inflammation and investigated the impact of airway and lung parenchyma remodelling on in vivo and in vitro respiratory mechanics. BALB/c mice were sensitized and challenged with ovalbumin in severe allergic inflammation (SA) group. The control group (C) received saline using the same protocol. Light and electron microscopy showed eosinophil and neutrophil infiltration and fibrosis in airway and lung parenchyma, mucus gland hyperplasia, and airway smooth muscle hypertrophy and hyperplasia in SA group. These morphological changes led to in vivo (resistive and viscoelastic pressures, and static elastance) and in vitro (tissue elastance and resistance) lung mechanical alterations. Airway responsiveness to methacholine was markedly enhanced in SA as compared with C group. Additionally, IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid were higher in SA group. In conclusion, this model of severe allergic lung inflammation enabled us to directly assess the role of airway and lung parenchyma inflammation and remodelling on respiratory mechanics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.
Resumo:
This work aimed to investigate some aspects related to the pathogenicity of Lechiguana, a bovine fibroproliferative lesion characterized by rapid collagen accumulation. Light and transmission electron microscopy and in situ hybridization studies were performed in order to elucidate the fibrogenic activity of this lesion. The characterization of fibroblastic plasticity in the lesion was done by immunohistochemical study for alpha-smooth-muscle cell actin. The ovoid-shaped cells presented positive reaction for alpha-smooth-muscle cell actin in their cytoplasm and, at the electron-microscopic level demonstrated basal lamina-like material adjacent to the external surface and collagen fibrils that corresponded to a cell population phenotypically similar to the myofibroblast. We also investigated alpha 1 collagen type I mRNA at different times of evolution of Lechiguana lesions, using isotopic and non-isotopic in situ hybridization. The results strongly suggest the involvement of a myofibroblast-like cell population that expresses mRNA for type I collagen and is probably associated with the increase of collagen deposition.
Resumo:
Objective: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H(2)O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H(2)O. Measurements and Main Results: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs. (Crit Care Med 2011; 39:1074-1081)