972 resultados para Receptor tyrosine kinases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In animal models, interstitial angiotensin II (ang II) and AT1 receptor (AT1R) are key mediators of renal inflammation and fibrosis in progressive chronic nephropathies. We hypothesized that these molecules were overexpressed in patients with progressive glomerulopathies. In this observational retrospective study, we described the expression of ang II and AT1R by immunohistochemistry in kidney biopsies of 7 patients with minimal change disease (MCD) and in 25 patients with progressive glomerulopathies (PGPs). Proteinuria, serum albumin, and serum creatinine were not statistically different between MCD and PGP patients. Total expression of ang II and AT1R was not statistically different between MCD (108.7 +/- 11.5 and 73.2 +/- 13.6 cells/mm(2), respectively) and PGN patients (100.7 +/- 9.0 and 157.7 +/- 13.8 cells/mm(2), respectively; p>0.05). Yet, interstitial expression of ang II and AT1R (91.6 +/- 16.0 and 45.6 +/- 5.4 cells/mm(2), respectively) was higher in patients with PGN than in those with MCD (22.0 +/- 4.1 and 17.9 +/- 2.9 cells/mm(2), respectively, p<0.05), as was the proportion of interstitial fibrosis (11.0 +/- 0.7% versus 6.1 +/- 1.2%, p<005). In patients with MCD, ang II and AT1R expressions predominate in the tubular compartment (52% and 36% of the positive cells, respectively). In those with PGP, the interstitial expression of ang II and AT1R predominates (58% and 45%, respectively). In conclusion, interstitial expression of ang II and AT1R is increased in patients with progressive glomerulopathies. The relationship of these results and interstitial fibrosis and disease progression in humans warrants further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules, We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain, The structure of the longer fragment shoes that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues, Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the identification of a murine cytomegalovirus (MCMV) G protein-coupled receptor (GCR) homolog. This open reading frame (M33) is most closely related to, and collinear with, human cytomegalovirus UL33, and homologs are also present in human herpesvirus 6 and 7 (U12 for both viruses). Conserved counterparts in the sequenced alpha- or gammaherpesviruses have not been identified to date, suggesting that these genes encode proteins which are important for the biological characteristics of betaherpesviruses. We have detected transcripts for both UL33 and M33 as early as 3 or 4 h postinfection, and these reappear at late times. In addition, we have identified N-terminal splicing for both the UL33 and M33 RNA transcripts. For both open reading frames, splicing results in the introduction of amino acids which are highly conserved among known GCRs. To characterise the function of the M33 in the natural host, two independent MCMV recombinant viruses were prepared, each of which possesses an M33 open reading frame which has been disrupted with the beta-galactosidase gene. While the recombinant M33 null viruses showed no phenotypic differences in replication from wild-type MCMV in primary mouse embryo fibroblasts in vitro, they showed severely restricted growth in the salivary glands of infected mice. These data suggest that M33 plays an important role in vivo, in particular in the dissemination to or replication in the salivary gland, and provide the first evidence for the function of a viral GCR homolog in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papillomaviruses (PVs) bind in a specific and saturable fashion to a range of epithelial and other cell lines. Treatment of cells with trypsin markedly reduces their ability to bind virus particles, suggesting that binding is mediated via a cell membrane protein. We have investigated the interaction bf human PV type 6b L1 virus-like particles (VLPs) with two epithelial cell lines, CV-1 and HaCaT, which bind VLPs, and a B-cell line (DG75) previously shown not to bind VLPs. Immunoprecipitation of a mixture of PV VLPs with [S-35]methionine-labeled cell extracts and with biotin-labeled cell surface proteins identified four proteins from CV-1 and HaCaT cells of 220, 120, 87, and 35 kDa that reacted with VLPs and were not present in DG75 cells. The alpha(6) beta(4) integrin complex has subunits corresponding to the VLP precipitated proteins, and the tissue distribution of this complex suggested that it was a candidate human PV receptor. Monoclonal antibodies (MAbs) to the alpha(6) or beta(4) integrin subunits precipitated VLPs from a mixture of CV-1 cell proteins and VLPs, whereas MAbs to other integrin subunits did not. An alpha(6) integrin-specific MAb (GoH3) inhibited VLP binding to CV-1 and HaCaT cells, whereas an anti-beta(4) integrin MAb and a range of integrin-specific and other MAbs did not. Furthermore, human laminin, the natural ligand for the alpha(6) beta(4) integrin, was able to block VLP binding. By use of sections of monkey esophagus, the distribution of alpha(6), integrin expression in the basal epithelium was shown to coincide with the distribution of bound VLPs. Taken together, these data suggest that VLPs bind specifically to the alpha(6) integrin subunit and that integrin complexes containing alpha(6) integrin complexed with either beta(1) or beta(4) integrins may act as a receptor for PV binding and entry into epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conformationally biased decapeptide agonist of human C5a (C5a(65-74)Y65,F67,P69,P71,D-Ala73 or YSFKPMPLaR) was used as a functional probe of the C5a receptor (C5aR) in order to understand the conformational features in the C-terminal effector region of C5a that are important for C5aR binding and signal transduction. YSFKPMPLaR was a potent, full agonist of C5a, but at higher concentrations had a superefficacious effect compared to the natural factor. The maximal efficacy of this analogue was 216 +/- 56% that of C5a in stimulating the release of beta-glucuronidase from human neutrophils. C5aR activation and binding curves both occurred in the same concentration range with YSFKPMPLaR, characteristics not observed with natural C5a or more conformationally flexible C-terminal agonists. YSFKPMPLaR was then used as a C-terminal effector template onto which was synthesized various C5aR binding determinants from the N-terminal core domain of the natural factor. In general, the presence of N-terminal binding determinants had little effect on either potency or binding affinity when the C-terminal effector region was presented to the C5aR in this biologically active conformation. However, one peptide, C5a(12-20)-Ahx-YSFKPMPLaR, expressed a 100-fold increase in affinity for the neutrophil C5aR and a 6-fold increase in potency relative to YSFKPMPLaR. These analyses showed that the peptides used in this study have up to 25% of the potency of C5a in human fetal artery and up to 5% of the activity of C5a in the PMN enzyme release assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. Among T. cruzi-infected individuals, only a subgroup develops severe chronic Chagas cardiomyopathy (CCC); the majority remain asymptomatic. T. cruzi displays numerous ligands for the Toll-like receptors (TLRs), which are an important component of innate immunity that lead to the transcription of proinflammatory cytokines by nuclear factor-kappa B. Because proinflammatory cytokines play an important role in CCC, we hypothesized that single-nucleotide polymorphisms (SNPs) in the genes that encode proteins in the TLR pathway could explain differential susceptibility to CCC among T. cruzi-infected individuals. Methods. For 169 patients with CCC and 76 T. cruzi-infected, asymptomatic individuals, we analyzed SNPs by use of polymerase chain reaction-restriction fragment length polymorphism analysis for the genes TLR1, TLR2, TLR4, TLR5, TLR9, and MAL/TIRAP, which encodes an adaptor protein. Results. Heterozygous carriers of the MAL/TIRAP variant S180L were more prevalent in the asymptomatic group (24 [32%] of 76 subjects) than in the CCC group (21 [12%] of 169) (chi(2) = 12.6; P = .0004 [adjusted P (P(c)) = .0084]; odds ratio [OR], 0.31 [95% confidence interval {CI}, 0.16-0.60]). Subgroup analysis showed a stronger association when asymptomatic patients were compared with patients who had severe CCC (i.e., patients with left-ventricular ejection fraction <= 40%) (chi(2) = 11.3; P = .0008 [P(c) = .017]; OR, 0.22 [95% CI, 0.09-0.56]) than when asymptomatic patients were compared with patients who had mild CCC (i.e., patients with left-ventricular ejection fraction >40%) (chi(2) = 7.7; P = .005 [P(c) = .11]; OR, 0.33 [95% CI, 0.15-0.73]). Conclusion. T. cruzi-infected individuals who are heterozygous for the MAL/TIRAP S180L variant that leads to a decrease in signal transduction upon ligation of TLR2 or TLR4 to their respective ligand may have a lower risk of developing CCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission. (C) 1997 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the ability of S-nitroso-N-acetylcyseine (SNAC) to prevent structural and functional myocardial alterations in hypercholesterolemic mice. C57BL6 wild-type (WT) and LDL-R-/male mice (S) were fed a standard diet for 15 days. LDL-R-/- mice (S) showed an 11% increase in blood pressure, 62% decrease in left atrial contractility and lower CD40L and eNOS expression relative to WT. LDL-R-/- mice fed an atherogenic diet for 15 days (Chol) showed significant increased left ventricular mass compared to S, which was characterized by: (1) 1.25-fold increase in the LV weight/body weight ratio and cardiomyocyte diameter; (2) enhanced expression of the NOS isoforms, CD40L, and collagen amount; and (3) no alteration in the atrial contractile performance. Administration of SNAC to Chol mice (Choi + SNAC) (0.51 mu mol/kg/day for 15 day, IP) prevented increased left ventricular mass, collagen deposit, NOS isoforms, and CD40L overexpression, but it had no effect on the increased blood pressure or atrial basal hypocontractility. Deletion of the LDL receptor gene in mice resulted in hypertension and a marked left atrial contractile deficit, which may be related to eNOS under-expression. Our data show that SNAC treatment has an antiinflammatory action that might contribute to prevention of structural and functional myocardial alterations in atherosclerotic mice independently of changes in blood pressure.