992 resultados para Reading out-loud
Humanitarian crisis. Out of the spotlight. European Community Humanitarian Office annual review 2000
Resumo:
The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.
Resumo:
A multiple regression analysis of the NCEP-NCAR reanalysis dataset shows a response to increased solar activity of a weakening and poleward shift of the subtropical jets. This signal is separable from other influences, such as those of El Nino-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and is very similar to that seen in previous studies using global circulation models (GCMs) of the effects of an increase in solar spectral irradiance. The response to increased stratospheric (volcanic) aerosol is found in the data to be a weakening and equatorward shift of the jets. The GCM studies of the solar influence also showed an impact on tropospheric mean meridional circulation with a weakening and expansion of the tropical Hadley cells and a poleward shift of the Ferrel cells. To understand the mechanisms whereby the changes in solar irradiance affect tropospheric winds and circulation, experiments have been carried out with a simplified global circulation model. The results show that generic heating of the lower stratosphere tends to weaken the subtropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low-latitude heating forcing them to move poleward, and high-latitude or latitudinally uniform heating forcing them equatorward. The patterns of response are similar to those that are found to be a result of the solar or volcanic influences, respectively, in the data analysis. This demonstrates that perturbations to the heat balance of the lower stratosphere, such as those brought about by solar or volcanic activity, can produce changes in the mean tropospheric circulation, even without any direct forcing below the tropopause.
Resumo:
The monsoon depressions that form over India during the summer are analyzed using simulations from the Laboratoire de Meteorologie Dynamique general circulation model. This type of synoptic system often occurs with a frequency of one to two per month and can produce a strong Indian rainfall. Two kinds of analyses are conducted in this study. The first one is a subjective analysis based on the evolution of the precipitation rate and the pattern of the sea level pressure. The second one is an objective analysis performed using the TRACK program, which identifies and tracks the minima in the sea level pressure anomaly held and computes the statistics for the distribution of systems. The analysis of a 9-yr control run, which simulates strong precipitation rates over the foothills of the Himalayas and over southern India but weak rates over central India, shows that the number of disturbances is coo low and that they almost never occur during August, when break conditions prevail. The generated disturbances more often move north, toward the foothills of the Himalayas. Another analysis is performed to study the effect of the Tibetan Plateau elevation on these disturbances with a 9-yr run carried out with a Tibetan Plateau at 50% of its current height. It is shown that this later integration simulates more frequent monsoon disturbances, which move rather northwestward, in agreement with the current observations. The comparison between the two runs shows that the June-July-August rainfall difference is in large part due to changes in the occurrence of the monsoon disturbances.
Resumo:
The automatic tracking technique used by Thorncroft and Hodges (2001) has been used to identify coherent vorticity structures at 850hPa over West Africa and the tropical Atlantic in the ECMWF 40-year reanalysis. The presence of two dominant source regions, north and south of 15ºN over West Africa, for storm tracks over the Atlantic was confirmed. Results show that the southern storm track provides most of the storms that reach the main development region where most tropical cyclones develop. There exists marked seasonal variability in location and intensity of the storms leaving the West African coast, which may influence the likelihood of downstream intensification and longevity. There exists considerable year-to-year variability in the number of West African storm tracks, both in numbers over the land and continuing out over the tropical Atlantic Ocean. While the low-frequency variability is well correlated with Atlantic tropical cyclone activity, West African rainfall and SSTs, the interannual variability is found to be uncorrelated with these. In contrast, variance of the 2-6-day-filtered meridional wind, which provides a synoptic-scale measure of African Easterly Wave activity, shows a significant, positive correlation with tropical cyclone activity at interannual timescales.
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.