951 resultados para Reactions and Synthesis of Quinoxalines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient green emission from ZnMgS:Mn2+ nanoparticles prepared by co-doping Mg2+ and Mn2+ ions into ZnS lattices has been observed. The synthesis is carried out in aqueous solution, followed by a post-annealing process, thus showing the features of less complexity, low cost, and easy incorporation of dopants. In comparison with the emission of ZnS:Mn2+ nanoparticles, which is located generally around 590 nm, the photoluminescence of ZnMgS:Mn2+ nanoparticles is blue-shifted by 14 nm in wavelength, leading to the enhanced green emission. The X-ray diffraction, electron spin resonance, and pressure dependent photoluminescence measurements suggest that the change of the crystal field caused by Mg2+ ionic doping and the lower symmetry in the nanoparticles may account for the blue-shift of the photoluminescence. The ZnMgS:Mn2+ nanoparticles with 1% Mn2+ doping exhibit the strongest luminescence, which could potentially meet the requirements for the construction of green light emitting diodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cubic boron nitride (c-BN) attracts widespread interest as a promising material for many potential applications because of its unique physical and chemical properties. Since the 1980's the research in c-BN thin films has been carried out, which reached its summit in the mid of 1990's, then turned into a downward period. In the past few years, however, important progress was achieved in synthesis and properties of cubic boron nitride films, such as obtaining > 1 mu m thick c-BN films, epitaxial growth of single crystalline c-BN films, and advances in mechanics properties and microstructures of the interlayer of c-BN films. The present article reviews the current status of the synthesis and properties of c-BN thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The room-temperature photoluminescence (PL) of copper doped zinc sulfide (ZnS:Cu) nanoparticles were investigated. These ZnS:Cu nanoparticles were synthesized by a facile wet chemical method, with the copper concentration varying from 0 to 2 mol%. By Gaussian fitting, the PL spectrum of the undoped ZnS nanoparticles was deconvoluted into two blue luminescence peaks (centered at 411 nm and 455 nm, respectively), which both can be attributed to the recombination of the defect sates of ZnS. But for the doped samples, a third peak at about 500 nm was also identified. This green luminescence originates from the recombination between the shallow donor level (sulfur vacancy) and the t(2) level of Cu2+. With the increase of the CU2+ concentration, the green emission peak is systematically shifted to longer wavelength. In addition, it was found that the overall photoluminescence intensity is decreased at the Cu2+ concentration of 2%. The concentration quenching of the luminescence may be caused by the formation of CuS compound. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality n-type CdS nanobelts (NBs) were synthesized via an in situ indium doping chemical vapor deposition method and fabricated into field effect transistors (FETs). The electron concentrations and mobilities of these CdS NBs are around (1.0x10(16)-3.0x10(17))/cm(3) and 100-350 cm(2)/V s, respectively. An on-off ratio greater than 10(8) and a subthreshold swing as small as 65 mV/decade are obtained at room temperature, which give the best performance of CdS nanowire/nanobelt FETs reported so far. n-type CdS NB/p(+)-Si heterojunction light emitting diodes were fabricated. Their electroluminescence spectra are dominated by an intense sharp band-edge emission and free from deep-level defect emissions. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide flower-like bunches were directly synthesized on indium-doped tin oxide (ITO) glass substrates through a simple chemical bath deposition process. By adjusting precursor concentration, other morphologies ( spindles and rods) were also obtained. All of them are hexagonal and single crystalline in nature and grow along the [ 0001] crystallographic direction. The possible growth mechanisms for these nano- and microcrystals were proposed. It was revealed that both the inherent highly anisotropic structure of ZnO and the precursor concentration play crucial roles in determining final morphologies of the products. In addition, vibrational properties of ZnO crystals with different morphologies were investigated by Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Al-Mg and Al-Mg-Y alloys as raw materials and nitrogen as gas reactants, AIN powders and composite AIN powders by in-situ synthesis method were prepared. AIN lumps prepared by the nitriding of Al-Mg and Al-Mg-Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23 % (mass fraction) oxygen impurity, and consisted of AIN single phase . The average particle size of AIN powders is 6.78 mum. Composite AlN powders consist of AlN phases and rare, earth oxide Y2O3 phase. The distribution of particle size of AIN powders shows two peaks. In view, of packing factor, AIN powders with such size distribution can easily be sintered to high density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel monomer, (trans)-7-[4-N,N-(di-beta-hydroxyethyl) amino-benzene]-ethenyl-3,5-dinitrothiophene (HBDT), and the corresponding prepolymer, polyurethane were synthesized and characterized. The details of synthesis of the monomer and its further polymerization were presented. The prepolymer and polyurethane exhibited good thermal stability and good solubility in common organic solvents. The d(33) coefficient of the poled films was determined to be 40.3 pm/V. (C) 2000 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.