1000 resultados para Radiciação solar
Resumo:
During the substorm growth phase, magnetic reconnection extracts ~10^15 J from the solar wind through magnetic reconnection at the magnetopause, which is then stored in the magnetotail lobes. Plasma sheet pressure then increases to balance magnetic flux density increases in the lobes. We examine plasma sheet pressure, density and temperature during substorm growth phases using nine years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG SML auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities and how this relates to the onset and size of the subsequent substorm expansion phase.
Resumo:
Anthropogenic aerosols in the atmosphere have the potential to affect regional-scale land hydrology through solar dimming. Increased aerosol loading may have reduced historical surface evaporation over some locations, but the magnitude and extent of this effect is uncertain. Any reduction in evaporation due to historical solar dimming may have resulted in an increase in river flow. Here we formally detect and quantify the historical effect of changing aerosol concentrations, via solar radiation, on observed river flow over the heavily industrialized, northern extra-tropics. We use a state-of-the-art estimate of twentieth century surface meteorology as input data for a detailed land surface model, and show that the simulations capture the observed strong inter-annual variability in runoff in response to climatic fluctuations. Using statistical techniques, we identify a detectable aerosol signal in the observed river flow both over the combined region, and over individual river basins in Europe and North America. We estimate that solar dimming due to rising aerosol concentrations in the atmosphere around 1980 led to an increase in river runoff by up to 25% in the most heavily polluted regions in Europe. We propose that, conversely, these regions may experience reduced freshwater availability in the future, as air quality improvements are set to lower aerosol loading and solar dimming.
Resumo:
This paper presents a comparison of various estimates of the open solar flux, deduced from measurements of the interplanetary magnetic field, from the aa geomagnetic index and from photospheric magnetic field observations. The first two of these estimates are made using the Ulysses discovery that the radial heliospheric field is approximately independent of heliographic latitude, the third makes use of the potential-field source surface method to map the total flux through the photosphere to the open flux at the top of the corona. The uncertainties associated with using the Ulysses result are 5%, but the effects of the assumptions of the potential field source surface method are harder to evaluate. Nevertheless, the three methods give similar results for the last three solar cycles when the data sets overlap. In 11-year running means, all three methods reveal that 1987 marked a significant peak in the long-term variation of the open solar flux. This peak is close to the solar minimum between sunspot cycles 21 and 22, and consequently the mean open flux (averaged from minimum to minimum) is similar for these two cycles. However, this similarity between cycles 21 and 22 in no way implies that the open flux is constant. The long-term variation shows that these cycles are fundamentally different in that the average open flux was rising during cycle 21 (from consistently lower values in cycle 20 and toward the peak in 1987) but was falling during cycle 22 (toward consistently lower values in cycle 23). The estimates from the geomagnetic aa index are unique as they extend from 1842 onwards (using the Helsinki extension). This variation gives strong anticorrelations, with very high statistical significance levels, with cosmic ray fluxes and with the abundances of the cosmogenic isotopes that they produce. Thus observations of photospheric magnetic fields, of cosmic ray fluxes, and of cosmogenic isotope abundances all support the long-term drifts in open solar flux reported by Lockwood et al. [1999a, 1999b].
Resumo:
In this paper the origin and evolution of the Sun’s open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun’s open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.
Resumo:
Recent paleoclimate studies provide strong evidence for an association between cosmogenic isotope production and Earth’s climate throughout the holecene. These isotopes are generated by the bombardment of Earth’s atmosphere by galactic cosmic rays, the fluxes of which vary in approximately inverse proportion to the total open magnetic flux of the Sun. This paper discusses how results from the Ulysses spacecraft allow us to quantify the open solar flux from observations of near-Earth interplanetary space and to study its long-term variations using the homogeneous record of geomagnetic activity. A study of the results and of their accuracy is presented. The two proposed mechanisms that could lead to the open solar flux being a good proxy for solar-induced climate change are discussed: the first is the modulation of the production of some types of cloud by the air ions produced by cosmic rays; the second is a variation in the total or spectral solar irradiance, in association with changes in the open flux. Some implications for our understanding of anthropogenic climate change are discussed.
Resumo:
The correlation between the coronal source flux F_{S} and the total solar irradiance I_{TS} is re-evaluated in the light of an additional 5 years' data from the rising phase of solar cycle 23 and also by using cosmic ray fluxes detected at Earth. Tests on monthly averages show that the correlation with F_{S} deduced from the interplanetary magnetic field (correlation coefficient, r = 0.62) is highly significant (99.999%), but that there is insufficient data for the higher correlation with annual means (r = 0.80) to be considered significant. Anti-correlations between I_{TS} and cosmic ray fluxes are found in monthly data for all stations and geomagnetic rigidity cut-offs (r ranging from −0.63 to −0.74) and these have significance levels between 85% and 98%. In all cases, the t is poorest for the earliest data (i.e., prior to 1982). Excluding these data improves the anticorrelation with cosmic rays to r = −0:93 for one-year running means. Both the interplanetary magnetic field data and the cosmic ray fluxes indicate that the total solar irradiance lags behind the open solar flux with a delay that is estimated to have an optimum value of 2.8 months (and is within the uncertainty range 0.8-8.0 months at the 90% level).
Resumo:
Using sunspot observations from Greenwich and Mount Wilson, we show that the latitudinal spread of sunspot groups has increased since 1874, in a manner that closely mirrors the long-term (similar to 100 year) changes in the coronal source flux, F-s, as inferred from geomagnetic activity. This latitude spread is shown to be well correlated with the flux emergence rate required by the model of the coronal source flux variation by Solanki er al. [2000]. The time constant for the decay of this open flux is found to be 3.6 +/-0.8 years. Using this value, and quantifying the photospheric flux emergence rate using the latitudinal spread of sunspot groups, the model reproduces the observed coronal source flux variation. The ratio of the 100-year drift to the solar cycle amplitude for the flux emergence rate is found to be half of the same ratio for F-s.
Resumo:
Measurements of the ionospheric E region during total solar eclipses in the period 1932-1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, phi, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in phi has a negligible probability of being a chance occurrence.
Resumo:
On 11 May 1999, the density of the solar wind dropped almost to zero. Space scientists are now giving their first reports of this rare opportunity to study the complex relationship between the Sun and Earth.
Resumo:
Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS) of the Charge and Mass Mgnetospheric Ion Composition Experiment (CAMMICE) instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT) and invariant latitude (3) for various energy ranges. For all energies observed by MICS (1.8–21.4 keV) and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF) or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX/BY ). It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a “cross-over” energy of about 23 keV) but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/gradient drift towards dusk. The convection electric field in the tail is weaker for northward IMF. Ions then need less energy to drift to the dusk flank, so that the cross-over energy, at which the asymmetry changes sense, is reduced.
Resumo:
In this paper we report coordinated multispacecraft and ground-based observations of a double substorm onset close to Scandinavia on November 17, 1996. The Wind and the Geotail spacecraft, which were located in the solar wind and the subsolar magnetosheath, respectively, recorded two periods of southward directed interplanetary magnetic field (IMF). These periods were separated by a short northward IMF excursion associated with a solar wind pressure pulse, which compressed the magnetosphere to such a degree that Geotail for a short period was located outside the bow shock. The first period of southward IMF initiated a substorm growth. phase, which was clearly detected by an array of ground-based instrumentation and by Interball in the northern tail lobe. A first substorm onset occurred in close relation to the solar wind pressure pulse impinging on the magnetopause and almost simultaneously with the northward turning of the IMF. However, this substorm did not fully develop. In clear association with the expansion of the magnetosphere at the end of the pressure pulse, the auroral expansion was stopped, and the northern sky cleared. We will present evidence that the change in the solar wind dynamic pressure actively quenched the energy available for any further substorm expansion. Directly after this period, the magnetometer network detected signatures of a renewed substorm growth phase, which was initiated by the second southward turning of the IMF and which finally lead to a second, and this time complete, substorm intensification. We have used our multipoint observations in order to understand the solar wind control of the substorm onset and substorm quenching. The relative timings between the observations on the various satellites and on the ground were used to infer a possible causal relationship between the solar wind pressure variations and consequent substorm development. Furthermore, using a relatively simple algorithm to model the tail lobe field and the total tail flux, we show that there indeed exists a close relationship between the relaxation of a solar wind pressure pulse, the reduction of the tail lobe field, and the quenching of the initial substorm.
Resumo:
Swept-frequency (1-10 MHz) ionosonde measurements were made at Helston, Cornwall (50 degrees 06'N, 5 degrees 18'W) during the total solar eclipse on August 11, 1999. Soundings were made every three minutes. We present a method for estimating the percentage of the ionising solar radiation which remains unobscured at any time during the eclipse by comparing the variation of the ionospheric E-layer with the behaviour of the layer during a control day. Application to the ionosonde date for II August, 1999, shows that the flux of solar ionising radiation fell to a minimum of 25 +/- 2% of the value before and after the eclipse. For comparison, the same technique was also applied to measurements made during the total solar eclipse of 9 July, 1945, at Sormjole (63 degrees 68'N, 20 degrees 20'E) and yielded a corresponding minimum of 16 +/- 2%. Therefore the method can detect variations in the fraction of solar emissions that originate from the unobscured corona and chromosphere. We discuss the differences between these two eclipses in terms of the nature of the eclipse, short-term fluctuations, the sunspot cycle and the recently-discovered long-term change in the coronal magnetic field.
Resumo:
We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.
Resumo:
We test the method of Lockwood et al. [1999] for deriving the coronal source flux from the geomagnetic aa index and show it to be accurate to within 12% for annual means and 4.5% for averages over a sunspot cycle. Using data from four solar constant monitors during 1981-1995, we find a linear relationship between this magnetic flux and the total solar irradiance. From this correlation, we show that the 131% rise in the mean coronal source field over the interval 1901-1995 corresponds to a rise in the average total solar irradiance of {\Delta}I = 1.65 +/- 0.23 Wm^{-2}.