931 resultados para Radiative Heat-Transfer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compact plate-fin reformer (PFR) consisting of closely spaced plate-fins, in which endothermic and exothermic reactions take place in alternate chambers, has been studied. In the PFR, which was based on a plate-fin heat exchanger, catalytic combustion of the reforming gas, as a simulation of the fuel cell anode off gas (AOG), supplied the necessary heat for the reforming reaction. One reforming chamber, which was for hydrogen production, was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. The PFR is very compact, easy to be placed and scaled up. The effect of the ratio of H2O/CH3OH on the performance of the PFR has been investigated, and temperature distributions in different chambers were studied. Besides, the stationary behavior of the PFR was also investigated. Heat transfer of the reformer was enhanced by internal plate-fins as well as by external catalytic combustion, which offer both high methanol conversion ratio and low CO concentration. In addition, the fully integrated reformer exhibited good test stability. Based on the PFR, a scale-up reformer was designed and operated continuously for 1000 h, with high methanol conversion ratio and low CO concentration. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we show that the configuration of a slender enclosure can be optimized such that the radiation heating of a stream of solid is performed with minimal fuel consumption at the global level. The solid moves longitudinally at constant rate through the enclosure. The enclosure is heated by gas burners distributed arbitrarily, in a manner that is to be determined. The total contact area for heat transfer between the hot enclosure and the cold solid is fixed. We find that minimal global fuel consumption is achieved when the longitudinal distribution of heaters is nonuniform, with more heaters near the exit than the entrance. The reduction in fuel consumption relative to when the heaters are distributed uniformly is of order 10%. Tapering the plan view (the floor) of the heating area yields an additional reduction in overall fuel consumption. The best shape is when the floor area is a slender triangle on which the cold solid enters by crossing the base. These architectural features recommend the proposal to organize the flow of the solid as a dendritic design, which enters as several branches, and exits as a single hot stream of prescribed temperature. The thermodynamics of heating is presented in modern terms in the Sec. (exergy destruction, entropy generation). The contribution is that to optimize "thermodynamically" is the same as reducing the consumption of fuel. © 2010 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer Aided Parallelisation Tools (CAPTools) is a toolkit designed to automate as much as possible of the process of parallelising scalar FORTRAN 77 codes. The toolkit combines a very powerful dependence analysis together with user supplied knowledge to build an extremely comprehensive and accurate dependence graph. The initial version has been targeted at structured mesh computational mechanics codes (eg. heat transfer, Computational Fluid Dynamics (CFD)) and the associated simple mesh decomposition paradigm is utilised in the automatic code partition, execution control mask generation and communication call insertion. In this, the first of a series of papers [1–3] the authors discuss the parallelisations of a number of case study codes showing how the various component tools may be used to develop a highly efficient parallel implementation in a few hours or days. The details of the parallelisation of the TEAMKE1 CFD code are described together with the results of three other numerical codes. The resulting parallel implementations are then tested on workstation clusters using PVM and an i860-based parallel system showing efficiencies well over 80%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formulation of the carrier-phase momentum and enthalpy source terms in mixed Lagrangian-Eulerian models of particle-laden flows is frequently reported inaccurately. Under certain circumstances, this can lead to erroneous implementations, which violate physical laws. A particle- rather than carrier-based approach is suggested for a consistent treatment of these terms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A computational model of solder joint formation and the subsequent cooling behaviour is described. Given the rapid changes in the technology of printed circuit boards, there is a requirement for comprehensive models of solder joint formation which permit detailed analysis of design and optimization options. Solder joint formation is complex, involving a range of interacting phenomena. This paper describes a model implementation (as part of a more comprehensive framework) to describe the shape formation (conditioned by surface tension), heat transfer, phase change and the development of elastoviscoplastic stress. The computational modelling framework is based upon mixed finite element and finite volume procedures, and has unstructured meshes enabling arbitrarily complex geometries to be analysed. Initial results for both through-hole and surface-mount geometries are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A brief description of a software environment in FORTRAN77 for the modelling of multi-physics phenomena is given. The numerical approach is based on finite volume methods but extended to unstructured meshes (ie. FV-UM). A range of interacting solution procedures for turbulent fluid flow, heat transfer with solidification/melting and elasto-visco-plastic solid mechanics are implemented in the first version of PHYSICA, which will be released in source code form to the academic community in late 1995.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The attachment of electronic components to printed circuit boards using solder material is a complex process. This paper presents a novel modeling methodology, which integrates the governing physics taking place. Multiphysics modeling technology, imbedded into the simulation tool—PHYSICA is used to simulate fluid flow, heat transfer, solidification, and stress evolution in an integrated manner. Results using this code are presented, detailing the mechanical response of two solder materials as they cool, solidify and then deform. The shape that a solder joint takes upon melting is predicted using the SURFACE EVOLVER code. Details are given on how these predictions can be used in the PHYSICA code to provide a modeling route by which the shape, solidification history, and resulting stress profiles can be predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procedures are described for solving the equations governing a multi-physics process. Finite volume techniques are used to discretise, using the same unstructured mesh, the equations of fluid flow, heat transfer with solidification, and solid deformation. These discretised equations are then solved in an integrated manner. The computational mechanics environment, PHYSICA, which facilitates the building of multi-physics models, is described. Comparisons between model predictions and experimental data are presented for the casting of metal components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metals casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena-heat conduction and solidification. However, to predict the formation of porosity (a factor of key importance in cast quality) requires the modelling of the interaction of the fluid flow, heat transfer, solidification and the development of stress-deformation in the solidified part of a component. In this paper, a model of the casting process is described which addresses all the main continuum phenomena involved in a coupled manner. The model is solved numerically using novel finite volume unstructured mesh techniques, and then applied to both the prediction of shape deformation (plus the subsequent formation of a gap at the metal-mould interface and its impact on the heat transfer behaviour) and porosity formation in solidifying metal components. Although the porosity prediction model is phenomenologically simplistic it is based on the interaction of the continuum phenomena and yields good comparisons with available experimental results. This work represents the first of the next generation of casting simulation tools to predict aspects of the structure of cast components.