982 resultados para Radiation Injuries, Experimental.
Resumo:
Inductors are important energy storage elements that are used as filters in switching power converters. The operating efficiency of power inductors depend on the initial design choices and they remain as one of the most inefficient elements in a power converter. The focus of this paper is to explore the inductor design procedure from the point of efficiency and operating temperature. A modified form of the area product approach is used as starting point for the inductor design. The equations which estimate the power loss in core and copper winding are described. The surface temperature of the inductor is modelled using heat transfer equations for radiation and natural convection. All design assumptions are verified by actual experimental data and results show a good match with the analysis.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
This paper presents a glowworm metaphor based distributed algorithm that enables a collection of minimalist mobile robots to split into subgroups, exhibit simultaneous taxis-behavior towards, and rendezvous at multiple radiation sources such as nuclear/hazardous chemical spills and fire-origins in a fire calamity. The algorithm is based on a glowworm swarm optimization (GSO) technique that finds multiple optima of multimodal functions. The algorithm is in the same spirit as the ant-colony optimization (ACO) algorithms, but with several significant differences. The agents in the glowworm algorithm carry a luminescence quantity called luciferin along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luciferin. The key feature that is responsible for the working of the algorithm is the use of an adaptive local-decision domain, which we use effectively to detect the multiple source locations of interest. The glowworms have a finite sensor range which defines a hard limit on the local-decision domain used to compute their movements. Extensive simulations validate the feasibility of applying the glowworm algorithm to the problem of multiple source localization. We build four wheeled robots called glowworms to conduct our experiments. We use a preliminary experiment to demonstrate the basic behavioral primitives that enable each glowworm to exhibit taxis behavior towards source locations and later demonstrate a sound localization task using a set of four glowworms.
Resumo:
A differential temperature controller is incorporated in a solar water heating system to study the influence of its set points on system performance. The effectiveness of the controller set points DeltaT ON and DeltaT OFF on the pump cycling and energy collection has been studied experimentally and the results are presented in this paper.
Resumo:
This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.
Resumo:
Experimental studies are presented to show the effect of thermal stresses on thermal contact conductance (TCC) at low contact pressures. It is observed that in a closed contact assembly, contact pressure acting on the interface changes with the changing temperature of contact members. This change in contact pressure consequently causes variations in the TCC of the junction. A relationship between temperature change and the corresponding magnitude of developed thermal stress in a contact assembly is determined experimentally. Inclusion of a term called temperature dependent load correction factor is suggested in the theoretical model for TCC to make it capable of predicting TCC values more accurately in contact assemblies that experience large temperature fluctuations. [DOI: 10.1115/1.4001615]
Resumo:
Background: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group.,Results: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis,while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. Conclusions: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.
Resumo:
The three-phase equilibrium between alloy, spinel solid solution and alpha -Al sub 2 O sub 3 in the Fe--Co--Al--O system at 1873k was fully characterized as a function of alloy composition using both experimental and computational methods. The equilibrium oxygen content of the liquid alloy was measured by suction sampling and inert gas fusion analysis. The O potential corresponding to the three-phase equilibrium was determined by emf measurements on a solid state galvanic cell incorporating (Y sub 2 O sub 3 )ThO sub 2 as the solid electrolyte and Cr + Cr sub 2 O sub 3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface between the alloy and alumina crucible was measured by electron probe microanalysis (EPMA). The experimental results were compared with the values computed using a thermodynamic model. The model used values for standard Gibbs energies of formation of pure end-member spinels and Gibbs energies of solution of gaseous O in liquid Fe and cobalt available in the literature. The activity--composition relationship in the spinel solid solution was computed using a cation distribution model. The variation of the activity coefficient of O with alloy composition in the Fe--Co--O system was estimated using both the quasichemical model of Jacob and Alcock and Wagner's model along with the correlations of Chiang and Chang and Kuo and Chang. The computed results of spinel composition and O potential are in excellent agreement with the experimental data. Graphs. 29 ref.--AA
Resumo:
High-precision measurement of the electrical resistance of nickel along its critical line, a first attempt of this kind, as a function of pressure to 47.5 kbar is reported. Our analysis yields the values of the critical exponents α=α’=-0.115±0.005 and the amplitude ratios ‖A/A’‖=1.17±0.07 and ‖D/D’‖=1.2±0.1. These values are in close agreement with those predicted by renormalization-group (RG) theory. Moreover, this investigation provides an unambiguous experimental verification to one of the key consequences of RG theory that the critical exponents and amplitudes ratios are insensitive to pressure variation in nickel, a Heisenberg ferromagnet.
Resumo:
Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.
Resumo:
The Hodgkin and Huxley (HH) model of action potential has become a central paradigm of neuroscience. Despite its ability to predict action potentials with remarkable accuracy, it fails to explain several biophysical findings related to the initiation and propagation of the nerve impulse. The isentropic heat release and optical phenomena demonstrated by various experiments suggest that action potential is accompanied by a transient phase change in the axonal membrane. In this study a method was developed for preparing a giant axon from the crayfish abdominal cord for studying the molecular mechanisms of action potential simultaneously by electrophysiological and optical methods. Also an alternative setup using a single-cell culture of an Aplysia sensory neuron is presented. In addition to the description of the method, the preliminary results on the effect of phloretin, a dipole potential lowering compound, on the excitability of a crayfish giant axon are presented.
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.