919 resultados para ROTATING SPIRALS
Resumo:
The research activities described in this thesis were focused on two main topics: the study of shaft-hub joint performance, with particular regard to interference-fitted and adhesively bonded connection, and the fatigue characterization of additively processed metal alloys. The research on interference-fitted shaft-hub joints dealt with some studies in the field of fretting fatigue. Rotating bending fatigue tests were performed on different materials by not conventional specimens to determine the fatigue properties of interference-fitted joints and to investigate the fretting fatigue phenomenon, which led to novel and original results. In adhesively bonded and interference-fitted shaft-hub connections (called hybrid joints) the synergic effect of anaerobic adhesive and interference has the capability of improving the joint strength. However, the adhesive contribution depends on several factors. Therefore, its behavior was investigated for different coupling pressure, coupling procedure, operating temperature and joint design. The study on additively manufactured metal alloy deals with rotating banding fatigue tests. AlSi10Mg and Maraging Stainless Steel CX were involved in the campaign for their wide applicability in Automotive. Build direction, heat and surface treatments were considered as input parameters. Fatigue results were interpreted by statistical method and microscopy analyses in order to determine the effectiveness and the beneficial or detrimental effects of the considered factors. Fracture mode and microstructure were investigated by fractographic and micrographic analyses
Resumo:
In the last years the increasing demand of higher torque and power densities has led to the adoption of hairpin windings (HWs) in electrical machines, mainly in those intended for automotive applications. However, this winding topology is quite sensitive to AC losses, hence one of their main challenges is represented by their reduction. This work deals with different design aspects related to the enhancements of some performance figures of rotating electrical machines for traction applications, above all power density and reliability, mainly through the adoption of HWs.
Resumo:
The presence of multiple stellar populations in globular clusters (GCs) is now well accepted, however, very little is known regarding their origin. In this Thesis, I study how multiple populations formed and evolved by means of customized 3D numerical simulations, in light of the most recent data from spectroscopic and photometric observations of Local and high-redshift Universe. Numerical simulations are the perfect tool to interpret these data: hydrodynamic simulations are suited to study the early phases of GCs formation, to follow in great detail the gas behavior, while N-body codes permit tracing the stellar component. First, we study the formation of second-generation stars in a rotating massive GC. We assume that second-generation stars are formed out of asymptotic giant branch stars (AGBs) ejecta, diluted by external pristine gas. We find that, for low pristine gas density, stars mainly formed out of AGBs ejecta rotate faster than stars formed out of more diluted gas, in qualitative agreement with current observations. Then, assuming a similar setup, we explored whether Type Ia supernovae affect the second- generation star formation and their chemical composition. We show that the evolution depends on the density of the infalling gas, but, in general, an iron spread is developed, which may explain the spread observed in some massive GCs. Finally, we focused on the long-term evolution of a GC, composed of two populations and orbiting the Milky Way disk. We have derived that, for an extended first population and a low-mass second one, the cluster loses almost 98 percent of its initial first population mass and the GC mass can be as much as 20 times less after a Hubble time. Under these conditions, the derived fraction of second-population stars reproduces the observed value, which is one of the strongest constraints of GC mass loss.
Resumo:
Globular clusters (GCs) are traditionally described as simple quasi-relaxed non-rotating stellar systems, characterized by spherical symmetry and isotropy in velocity space. However, recent studies have shown deviations from isotropic velocity distributions and significant internal rotation in many GCs, suggesting that their internal structure and kinematics are more complex than previously thought. The aim of this thesis is to investigate the internal kinematics of Galactic Globular Clusters (GGCs) as part of the Multi-Instrument Kinematic Survey (MIKiS), which exploits the capabilities of different ESO-VLT spectrographs to obtain comprehensive velocity dispersion (VD) and rotation profiles of GGCs. Moreover, this thesis has the particular goal of unraveling the kinematics of GC cores, which are still largely unexplored, by taking advantage of the exceptional spatial resolution of the adaptive-optics assisted integral-field spectrograph MUSE/NFM. The thesis presents a thorough kinematic study of three GGCs NGC 1904, NGC 6440, and NGC 6569. By combining the data sets acquired with four different spectrographs, we obtained the radial velocity (RV) of more than 1000 individual stars in each cluster, sampling from the innermost to the outermost regions. This allowed us to obtain the entire VD profile of each cluster and exclude the presence of an intermediate-mass black hole in the core of NGC 1904, at odds with previous findings obtained from integrated-light spectra. The studies also revealed signatures of internal rotation in each of the GCs studied. These results, supported by those of N-body simulations, prove that GCs were born with a significant initial rotation that they gradually lost through internal two-body relaxation and angular momentum loss carried away by escaping stars. Furthermore, we derived the structural parameters of NGC 6440 and NGC 6569, obtaining a comprehensive overview of the internal kinematics and structure of these GCs, which is necessary to properly reconstruct the evolutionary history of these systems.