940 resultados para RNA sequence
Resumo:
本发明公开了金丝桃素的新用途。本发明发明人的实验证实,金丝桃素对RNA病毒,特别是禽流感病毒,口蹄疫病毒和犬瘟热病毒具有较好的抑制和灭活效果,可以该化合物为活性成分,制备成抗RNA病毒药物。该抗病毒药物可用于临床防治和治疗禽流感、犬瘟热、口蹄疫等由RNA病毒引发的疾病,对禽业、犬业及畜牧养殖业等意义重大。此外,我国草药资源丰富,该药物具有工业化生产的可行性。综上所述,金丝桃素将在医学和生物制药领域,尤其是抗RNA病毒药物的制备领域具有较大的实际意义和广阔的应用前景。
Resumo:
This paper discusses the problem of restoring a digital input signal that has been degraded by an unknown FIR filter in noise, using the Gibbs sampler. A method for drawing a random sample of a sequence of bits is presented; this is shown to have faster convergence than a scheme by Chen and Li, which draws bits independently. ©1998 IEEE.
Resumo:
The red panda (Ailurus fulgens) is one of the flagship species in worldwide conservation and is of special interest in evolutionary studies due to its taxonomic uniqueness. We sequenced a 236-bp fragment of the mitochondrial D-loop region in a sample of 5
Resumo:
The still little known concolor gibbons are represented by 14 taxa (five species, nine subspecies) distributed parapatrically in China, Myanmar, Vietnam, Laos and Cambodia. To set the stage for a phylogeographic study of the genus we examined DNA sequence
Resumo:
从菜花烙铁头蛇的毒腺中,利用RT2PCR 进行体外扩增,克隆到2 个金属蛋白酶2去整合素基 因,命名为TJM21、TJM22. TJM21 cDNA 全长为1 528 bp ,编码481 个氨基酸;TJM22 cDNA 全长为1 578 bp ,编码484 个氨基酸. TJM21 和TJM22 都属于Ⅱ型蛇毒金属蛋白酶,由信号肽、前肽、金属蛋白酶、 间隔肽和去整合素5 部分组成. Ⅱ型蛇毒金属蛋白酶氨基酸序列的比较及进化分析显示,它可进一 步分为两类,一类包括大多数Ⅱ型蛇毒金属蛋白酶(其中含有TJM21) ,而TJM22 和agkistin 则组成了 另一类. 并且TJM22 和agkistin 的第407 位和第426 位残基都是半胱氨酸,而在其它Ⅱ型金属蛋白酶 的相应位置,407 位是丝氨酸,426 位则缺失. TJM22 和agkistin 均有可与整合素α2 Ⅰ区域特异性结合 的片段QPNRKRHDNAQ(残基276~284) ,这个片段在其它Ⅱ型金属蛋白酶中并没有发现. 因此推 断, TJM22 和agkistin 可能属于一类新型的Ⅱ型蛇毒金属蛋白酶.
Resumo:
Samples of Tor tor were collected from Bari Reservoir of Udaipur and Narmada River at Hoshangabad (India), in the months of July and November 2005, respectively. Twenty-five samples were collected from each location. Bari Reservoir samples ranged from 17.0 to 24.5 cm in total length and from 75 to 155 g in weight, while Narmada samples ranged from 20.0 to 42.0 cm in length and 90 to 425 g in weight. The nucleic acid content in body muscle of Tor tor and the RNA/DNA ratio were estimated. The age of fishes was estimated by the scale study method and specimens were classified into four age groups. RNA/DNA ratio showed significant linear increase with increase in weight and age till the age of three years after which, the growth rate reduced. The 1-2 year group was the only one common between the two water bodies and a comparison of RNA/DNA ratios showed higher growth rate in Bari Reservoir. The gross primary productivity was also higher in Bari Reservoir being 551 mg cmˉ³ dˉ¹ compared to 404 mg cmˉ³ dˉ¹ observed for Narmada River. The condition factor (K) was found to be higher (1.21) in the fish from the Bari Reservoir compared to those of Narmada River (1.14). The growth rate was higher in females compared to males in >100 g specimens.
Resumo:
Partial sequences of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes were used for species identification and estimating phylogenetic relationship among three commercially important Ompok species viz. O. Pabda, O. pabo and O. bimaculatus. The sequence analysis of Cyt b (1118bp) and 16S rRNA (569 & 570bp) genes revealed that O. pabda, O. pabo & 0. bimaculatus were genetically distinct species and they exhibited identical phylogenetic relationship. The present study discussed usefulness of mtDNA genes (Cyt b & 16S rRNA) in resolving taxonomic ambiguity and estimating phylogenetics relationship.
Resumo:
Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3'-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.
Resumo:
Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1-DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.
Resumo:
The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-Dependent RNA Polymerase 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is approximately 155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1-7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs.
Resumo:
In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.
Resumo:
Cytosine DNA methylation protects eukaryotic genomes by silencing transposons and harmful DNAs, but also regulates gene expression during normal development. Loss of CG methylation in the Arabidopsis thaliana met1 and ddm1 mutants causes varied and stochastic developmental defects that are often inherited independently of the original met1 or ddm1 mutation. Loss of non-CG methylation in plants with combined mutations in the DRM and CMT3 genes also causes a suite of developmental defects. We show here that the pleiotropic developmental defects of drm1 drm2 cmt3 triple mutant plants are fully recessive, and unlike phenotypes caused by met1 and ddm1, are not inherited independently of the drm and cmt3 mutations. Developmental phenotypes are also reversed when drm1 drm2 cmt3 plants are transformed with DRM2 or CMT3, implying that non-CG DNA methylation is efficiently re-established by sequence-specific signals. We provide evidence that these signals include RNA silencing though the 24-nucleotide short interfering RNA (siRNA) pathway as well as histone H3K9 methylation, both of which converge on the putative chromatin-remodeling protein DRD1. These signals act in at least three partially intersecting pathways that control the locus-specific patterning of non-CG methylation by the DRM2 and CMT3 methyltransferases. Our results suggest that non-CG DNA methylation that is inherited via a network of persistent targeting signals has been co-opted to regulate developmentally important genes. © 2006 Chan et al.