934 resultados para RNA, Helminth
Resumo:
Caenorhabditis elegans dauer formation is an alternative larval developmental pathway that the worm can take when environmental conditions become detrimental. Animals can survive several months in this stress-resistant stage and can resume normal development when growth conditions improve. Although the worms integrate a variety of sensory information to commit to dauer formation, it is currently unknown whether they also monitor internal cellular damage. The Ro ribonucleoprotein complex, which was initially described as a human autoantigen, is composed of one major 60-kDa protein, Ro60, that binds to one of four small RNA molecules, designated Y RNAs. Ro60 has been shown to bind mutant 5S rRNA molecules in Xenopus oocytes, suggesting a role for Ro60 in 5S rRNA biogenesis. Analysis of ribosomes from a C. elegans rop-1(−) strain, which is null for the expression of Ro60, demonstrated that they contain a high percentage of mutant 5S rRNA molecules, thereby strengthening the notion of a link between the rop-1 gene product and 5S rRNA quality control. The Ro particle was recently shown to be involved in the resistance of Deinococcus radiodurans to UV irradiation, suggesting a role for the Ro complex in stress resistance. We have studied the role of rop-1 in dauer formation. We present genetic and biochemical evidence that rop-1 interacts with dauer-formation genes and is involved in the regulation of the worms' entry into the dauer stage. Furthermore, we find that the rop-1 gene product undergoes a proteolytic processing step that is regulated by the dauer formation pathway via an aspartic proteinase. These results suggest that the Ro particle may function in an RNA quality-control checkpoint for dauer formation.
Resumo:
The core enzyme of Escherichia coli RNA polymerase acquires essential promoter recognition and transcription initiation activities by binding one of several σ subunits. To characterize the proximity between σ70, the major σ for transcription of the growth-related genes, and the core enzyme subunits (α2ββ′), we analyzed the protein-cutting patterns produced by a set of covalently tethered FeEDTA probes [FeBABE: Fe (S)-1-(p-bromoacetamidobenzyl)EDTA]. The probes were positioned in or near conserved regions of σ70 by using seven mutants, each carrying a single cysteine residue at position 132, 376, 396, 422, 496, 517, or 581. Each FeBABE-conjugated σ70 was bound to the core enzyme, which led to cleavage of nearby sites on the β and β′ subunits (but not α). Unlike the results of random cleavage [Greiner, D. P., Hughes, K. A., Gunasekera, A. H. & Meares, C. F. (1996) Proc. Natl. Acad. Sci. USA 93, 71–75], the cut sites from different probe-modified σ70 proteins are clustered in distinct regions of the subunits. On the β subunit, cleavage is observed in two regions, one between residues 383 and 554, including the conserved C and Rif regions; and the other between 854 and 1022, including conserved region G, regions of ppGpp sensitivity, and one of the segments forming the catalytic center of RNA polymerase. On the β′ subunit, the cleavage was identified within the sequence 228–461, including β′ conserved regions C and D (which comprise part of the catalytic center).
Resumo:
DsrA is an 87-nucleotide regulatory RNA of Escherichia coli that acts in trans by RNA–RNA interactions with two different mRNAs, hns and rpoS. DsrA has opposite effects on these transcriptional regulators. H-NS levels decrease, whereas RpoS (σs) levels increase. Here we show that DsrA enhances hns mRNA turnover yet stabilizes rpoS mRNA, either directly or via effects on translation. Computational and RNA footprinting approaches led to a refined structure for DsrA, and a model in which DsrA interacts with the hns mRNA start and stop codon regions to form a coaxial stack. Analogous bipartite interactions exist in eukaryotes, albeit with different regulatory consequences. In contrast, DsrA base pairs in discrete fashion with the rpoS RNA translational operator. Thus, different structural configurations for DsrA lead to opposite regulatory consequences for target RNAs.
Resumo:
As an adhesion receptor, the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) contributes a strong adhesive force to promote T lymphocyte recirculation and interaction with antigen-presenting cells. As a signaling molecule, LFA-1-mediates transmembrane signaling, which leads to the generation of second messengers and costimulation resulting in T cell activation. We recently have demonstrated that, in costimulatory fashion, LFA-1 activation promotes the induction of T cell membrane urokinase plasminogen activator receptor (uPAR) and that this induced uPAR is functional. To investigate the mechanism(s) of this induction, we used the RNA polymerase II inhibitor 5,6-dichloro-1-β-d-ribobenzimidazole and determined that uPAR mRNA degradation is delayed by LFA-1 activation. Cloning of the wild-type, deleted and mutated 3′-untranslated region of the uPAR cDNA into a serum-inducible rabbit β-globin cDNA reporter construct revealed that the AU-rich elements and, in particular the nonameric UUAUUUAUU sequence, are crucial cis-acting elements in uPAR mRNA degradation. Experiments in which Jurkat T cells were transfected with reporter constructs demonstrated that LFA-1 engagement was able to stabilize the unstable reporter mRNA containing the uPAR 3′-untranslated region. Our study reveals a consequence of adhesion receptor-mediated signaling in T cells, which is potentially important in the regulation of T cell activation, including production of cytokines and expression of proto-oncogenes, many of which are controlled through 3′ AU-rich elements.
Resumo:
M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.
Resumo:
The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (−)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (−)strand RNAs, and attempts to initiate infection with multimeric (−)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (−)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (−)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (−)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (−)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (−)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (−)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (−)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (−)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.
Resumo:
Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3′-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, with RNA minihelices recapitulating accepting branches of canonical tRNAs. Prediction of the histidylation function of the new family of minimalist tRNA-like structures relates to the geometry of resected pseudoknots that allows proper presentation to histidyl-tRNA synthetase of analogues of the histidine identity determinants N-1 and N73 present in tRNAs. This geometry is such that the analogue of the major N-1 histidine determinant in the RNA circles faces the analogue of the discriminator N73 nucleotide in the accepting oligonucleotides. The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes. The inverse combination (C-1/G73) leads to the worst histidine acceptors with charging efficiencies reduced by 2–3 orders of magnitude. Altogether, these findings open new perspectives for understanding evolution of tRNA identity and serendipitous RNA functions.
Resumo:
Cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) belong to the Cucumovirus genus. They have a tripartite genome consisting of single-stranded RNAs, designated 1, 2, and 3. Previous studies have shown that viable pseudorecombinants could be created in vitro by reciprocal exchanges between CMV and TAV RNA 3, but exchanges of RNAs 1 and 2 were replication deficient. When we coinoculated CMV RNAs 2 and 3 along with TAV RNAs 1 and 2 onto Nicotiana benthamiana, a hybrid quadripartite virus appeared that consisted of TAV RNA 1, CMV RNAs 2 and 3, and a distinctive chimeric RNA originating from a recombination between CMV RNA 2 and the 3′-terminal 320 nucleotides of TAV RNA 2. This hybrid arose by means of segment reassortment and RNA recombination to produce an interspecific hybrid with the TAV helicase subunit and the CMV polymerase subunit. To our knowledge, this is the first report demonstrating the evolution of a new plant or animal virus strain containing an interspecific hybrid replicase complex.
Formation of the preprimosome protects λ O from RNA transcription-dependent proteolysis by ClpP/ClpX
Resumo:
Using the bacteriophage λ DNA replication system, composed entirely of purified proteins, we have tested the accessibility of the short-lived λ O protein to the ClpP/ClpX protease during the various stages of λ DNA replication. We find that binding of λ O protein to its oriλ DNA sequence, leading to the so-called “O-some” formation, largely inhibits its degradation. On the contrary, under conditions permissive for transcription, the λ O protein bound to the oriλ sequence becomes largely accessible to ClpP/ClpX-mediated proteolysis. However, when the λ O protein is part of the larger oriλ:O⋅P⋅DnaB preprimosomal complex, transcription does not significantly increase ClpP/ClpX-dependent λ O degradation. These results show that transcription can stimulate proteolysis of a protein that is required for the initiation of DNA replication.
Resumo:
A mutation in RPB5 (rpb5–9), an essential RNA polymerase subunit assembled into RNA polymerases I, II, and III, revealed a role for this subunit in transcriptional activation. Activation by GAL4-VP16 was impaired upon in vitro transcription with mutant whole-cell extracts. In vivo experiments using inducible reporter plasmids and Northern analysis support the in vitro data and demonstrate that RPB5 influences activation at some, but not all, promoters. Remarkably, this mutation maps to a conserved region of human RPB5 implicated by others to play a role in activation. Chimeric human-yeast RPB5 containing this conserved region now can function in place of its yeast counterpart. The defects noted with rpb5–9 are similar to those seen in truncation mutants of the RPB1-carboxyl terminal domain (CTD). We demonstrate that RPB5 and the RPB1-CTD have overlapping roles in activation because the double mutant is synthetically lethal and has exacerbated activation defects at the GAL1/10 promoter. These studies demonstrate that there are multiple activation targets in RNA polymerase II and that RPB5 and the CTD have similar roles in activation.
Resumo:
Introduction of exogenous double-stranded RNA (dsRNA) into Caenorhabditis elegans has been shown to specifically and potently disrupt the activity of genes containing homologous sequences. In this study we present evidence that the primary interference effects of dsRNA are post-transcriptional. First, we examined the primary DNA sequence after dsRNA-mediated interference and found no evidence for alterations. Second, we found that dsRNA-mediated interference with the upstream gene in a polar operon had no effect on the activity of the downstream gene; this finding argues against an effect on initiation or elongation of transcription. Third, we observed by in situ hybridization that dsRNA-mediated interference produced a substantial, although not complete, reduction in accumulation of nascent transcripts in the nucleus, while cytoplasmic accumulation of transcripts was virtually eliminated. These results indicate that the endogenous mRNA is the target for interference and suggest a mechanism that degrades the targeted RNA before translation can occur. This mechanism is not dependent on the SMG system, an mRNA surveillance system in C. elegans responsible for targeting and destroying aberrant messages. We suggest a model of how dsRNA might function in a catalytic mechanism to target homologous mRNAs for degradation.
Resumo:
RNA polymerase I (Pol I) transcription in the yeast Saccharomyces cerevisiae is greatly stimulated in vivo and in vitro by the multiprotein complex, upstream activation factor (UAF). UAF binds tightly to the upstream element of the rDNA promoter, such that once bound (in vitro), UAF does not readily exchange onto a competing template. Of the polypeptides previously identified in purified UAF, three are encoded by genes required for Pol I transcription in vivo: RRN5, RRN9, and RRN10. Two others, p30 and p18, have remained uncharacterized. We report here that the N-terminal amino acid sequence, its mobility in gel electrophoresis, and the immunoreactivity of p18 shows that it is histone H3. In addition, histone H4 was found in UAF, and myc-tagged histone H4 could be used to affinity-purify UAF. Histones H2A and H2B were not detectable in UAF. These results suggest that histones H3 and H4 probably account for the strong binding of UAF to DNA and may offer a means by which general nuclear regulatory signals could be transmitted to Pol I.
Resumo:
We describe a mutant Escherichia coli RNA polymerase (RNAP) that forms stable open promoter complexes even at −20°C but with a shortened melted region that extends downstream to only position −7. In the presence of initiating transcription substrates, the mutant RNAP undergoes a temperature-dependent isomerization, resulting in a promoter complex that is indistinguishable from the wild-type RNAP–promoter complex, with the melted region extended downstream to position +4. We propose that the open complex formed by the mutant RNAP represents an intermediate on the normal promoter-opening pathway and that our results support earlier findings that initial promoter opening occurs in the upstream region of the −10 promoter consensus element and subsequently extends downstream to encompass the transcription start site.
Resumo:
HIV type 1 (HIV-1) specifically uses host cell tRNALys-3 as a primer for reverse transcription. The 3′ 18 nucleotides of this tRNA are complementary to a region on the HIV RNA genome known as the primer binding site (PBS). HIV-1 has a strong preference for maintaining a lysine-specific PBS in vivo, and viral genomes with mutated PBS sequences quickly revert to be complementary to tRNALys-3. To investigate the mechanism for the observed PBS reversion events in vitro, we examined the capability of the nucleocapsid protein (NC) to anneal various tRNA primer sequences onto either complementary or noncomplementary PBSs. We show that NC can anneal different full-length tRNAs onto viral RNA transcripts derived from the HIV-1 MAL or HXB2 isolates, provided that the PBS is complementary to the tRNA used. In contrast, NC promotes specific annealing of only tRNALys-3 onto an RNA template (HXB2) whose PBS sequence has been mutated to be complementary to the 3′ 18 nt of human tRNAPro. Moreover, HIV-1 reverse transcriptase extends this binary complex from the proline-specific PBS. The formation of the noncomplementary binary complex does not occur when a chimeric tRNALys/Pro containing proline-specific D and anticodon domains is used as the primer. Thus, elements outside the acceptor-TΨC domains of tRNALys-3 play an important role in preferential primer use in vitro. Our results support the hypothesis that mutant PBS reversion is a result of tRNALys-3 annealing onto and extension from a PBS that specifies an alternate host cell tRNA.