969 resultados para RHODIUM-CATALYZED HYDROFORMYLATION
Resumo:
This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2002 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2002 at the 23.10.2002; 05.11.2002; 20.11.2002; 05.12.2002; and 28.12.2002, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.
Resumo:
Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ~0.1 (Ir, Ru) to ~5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (~30%) and fractional crystallization (~45%). First order approximations of the fractionation required to produce the KP basalts from an ~30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]_pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.
Resumo:
Despite intensive research on the different domains of the marine phosphorus (P) cycle during the last decades, frequently discussed open questions still exist especially on controlling factors for the benthic behaviour of P and its general distribution in sediment-pore water systems. Steady state or the internal balance of all relevant physical and (bio)geochemical processes are amongst the key issues. In this study we present and discuss an extended data set from surface sediments recovered from three locations on the NW African continental slope. Pore water data and results from sequential sediment extractions give clear evidence to the well-known close relationship between the benthic cycles of P and iron. Accordingly, most of the dissolved phosphate must have been released by microbially catalyzed reductive dissolution of iron (oxhydr)oxides. However, rates of release and association of P and iron, respectively, are not directly represented in profiles of element specific sediment compositions. Results from steady-state based transport-reaction modelling suggest that particle mixing due to active bioturbation, or rather a physical net downward transport of P associated to iron (oxyhydr)oxides, is an essential process for the balance of the inspected benthic cycles. This study emphasizes the importance of balancing analytical data for a comprehensive understanding of all processes involved in biogeochemical cycles.
Resumo:
Members of the highly diverse bacterial phylum Verrucomicrobia are globally distributed in various terrestrial and aquatic habitats. They are key players in soils, but little is known about their role in aquatic systems. Thus, we applied newly designed 16S rRNA-targeted probe set for the identification of Verrucomicrobia and of clades within this phylum to a study concerning the seasonal abundance of Verrucomicrobia in waters of the humic lake Große Fuchskuhle (Germany) by catalyzed reporter deposition fluorescence in situ hybridization. The Lake Große Fuchskuhle is located in the large Mecklenburg-Brandenburg lake district near Berlin (53°10'N, 13°02'E). The lake was artificially divided into four basins (northwest, northeast, southwest, and southeast). We chose the two most contrasting basins, the acidotrophic humic southwestern (SW) basin with a high influx of allochthonous dissolved organic carbon (DOC) and the more mesotrophic northeastern (NE) basin, to study abundance and seasonality of Verrucomicrobia. Lake water was collected from depths of 0.5 m (oxic) and 4.5 m (seasonally anoxic) approximately trimonthly in 2000 (March, June, September and December). The lake hosted diverse Verrucomicrobia clades in all seasons. Either Spartobacteria (up to 19%) or Opitutus spp. (up to 7%) dominated the communities, whereas Prosthecobacter spp. were omnipresent in low numbers (<1%). Verrucomicrobial abundance and community composition varied between the seasons, and between more and less humic basins, but were rather stable in oxic and seasonally anoxic waters.