964 resultados para RECEPTOR-MEDIATED ENDOCYTOSIS
Resumo:
W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.
Resumo:
Little is known about the pathogenic mechanisms of autoimmune pancreatitis (AIP), an increasingly recognized, immune-mediated form of chronic pancreatitis. Current treatment options are limited and disease relapse is frequent. We investigated factors that contribute to the development of AIP and new therapeutic strategies.
Resumo:
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Resumo:
INTRODUCTION: HOE-140/ Icatibant is a selective, competitive antagonist to bradykinin (BK) against its binding to the kinin B2 receptor. Substitution of five non-proteogeneic amino acid analogues makes icatibant resistant to degradation by metalloproteases of kinin catabolism. Icatibant has clinical applications in inflammatory and vascular leakage conditions caused by an acute (non-controlled) production of kinins and their accumulation at the endothelium B2 receptor. The clinical manifestation of vascular leakage, called angioedema (AE), is characterized by edematous attacks of subcutaneous and submucosal tissues, which can cause painful intestinal consequences, and life-threatening complications if affecting the larynx. Icatibant is registered for the treatment of acute attacks of the hereditary BK-mediated AE, i.e., AE due to C1 inhibitor deficiency. AREAS COVERED: This review discusses emerging knowledge on the kinin system: kinin pharmacological properties, biochemical characteristics of the contact phase and kinin catabolism proteases. It underlines the responsibility of the kinins in AE initiation and the potency of icatibant to inhibit AE formation by kinin-receptor interactions. EXPERT OPINION: Icatibant antagonist properties protect BK-mediated AE patients against severe attacks, and could be developed for use in inflammatory conditions. More studies are required to confirm whether or not prolonged and frequent applications of icatibant could result in the impairment of the cardioprotective effect of BK.
Resumo:
The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.
Resumo:
Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.
Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells
Resumo:
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.
Resumo:
Inflammatory reactions involve a network of chemical and molecular signals that initiate and maintain host response. In inflamed tissue, immune system cells generate opioid peptides that contribute to potent analgesia by acting on specific peripheral sensory neurons. In this study, we show that opioids also modulate immune cell function in vitro and in vivo. By binding to its specific receptor, the opioid receptor-specific ligand DPDPE triggers monocyte adhesion. Integrins have a key role in this process, as adhesion is abrogated in cells treated with specific neutralizing anti-alpha5beta1 integrin mAb. We found that DPDPE-triggered monocyte adhesion requires PI3Kgamma activation and involves Src kinases, the guanine nucleotide exchange factor Vav-1, and the small GTPase Rac1. DPDPE also induces adhesion of pertussis toxin-treated cells, indicating involvement of G proteins other than Gi. These data show that opioids have important implications in regulating leukocyte trafficking, adding a new function to their known effects as immune response modulators.
Resumo:
Eph receptor tyrosine kinases are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Caveolae are flask-shaped invaginations of the cell membrane; their major structural protein, caveolin-1, has been shown to regulate signaling molecules localized in these micro-domains. The interaction of caveolin-1 with several of these proteins is mediated by the binding of its scaffolding domain to a region containing hydrophobic amino acids within these proteins. The presence of such a motif within the EphB1 kinase domain prompted us to investigate the caveolar localization and regulation of EphB1 by caveolin-1. We report that EphB1 receptors are localized in caveolae, and directly interact with caveolin-1 upon ligand stimulation. This interaction, as well as EphB1-mediated activation of extracellular-signal-regulated kinase (ERK), was abrogated by overexpression of a caveolin-1 mutant lacking a functional scaffolding domain. Interaction between Ephs and caveolin-1 is not restricted to the B-subclass of receptors, since we show that EphA2 also interacts with caveolin-1. Furthermore, we demonstrate that the caveolin-binding motif within the kinase domain of EphB1 is primordial for its correct membrane targeting. Taken together, our findings establish caveolin-1 as an important regulator of downstream signaling and membrane targeting of EphB1.
Resumo:
BACKGROUND: Quinolones are widely used, broad spectrum antibiotics that can induce immediate- and delayed-type hypersensitivity reactions, presumably either IgE or T cell mediated, in about 2-3% of treated patients. OBJECTIVE: To better understand how T cells interact with quinolones, we analysed six patients with delayed hypersensitivity reactions to ciprofloxacin (CPFX), norfloxacin (NRFX) or moxifloxacin (MXFX). METHODS: We confirmed the involvement of T cells in vivo by patch test and in vitro by means of the lymphocyte proliferation test (LTT). The nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones were investigated through the generation and analysis (flow cytometry and proliferation assays) of quinolone-specific T cell clones (TCC). RESULTS: The LTT confirmed the involvement of T cells because peripheral blood mononuclear cells (PBMC) mounted an enhanced in vitro proliferative response to CPFX and/or NRFX or MXFX in all patients. Patch tests were positive after 24 and 48 h in three out of the six patients. From two patients, CPFX- and MXFX-specific CD4(+)/CD8(+) T cell receptor (TCR) alphabeta(+) TCC were generated to investigate the nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones. The use of eight different quinolones as antigens (Ag) revealed three patterns of cross-reactivity: clones exclusively reacting with the eliciting drug, clones with a limited cross-reactivity and clones showing a broad cross-reactivity. The TCC recognized quinolones directly without need of processing and without covalent association with the major histocompatability complex (MHC)-peptide complex, as glutaraldehyde-fixed Ag-presenting cells (APC) could present the drug and washing quinolone-pulsed APC removed the drug, abrogating the reactivity of quinolone-specific TCC. CONCLUSION: Our data show that T cells are involved in delayed immune reactions to quinolones and that cross-reactivity among the different quinolones is frequent.
Resumo:
A series of Gly-neurotensin(8-13) analogues modified at the N-terminus by acyclic tetraamines (Demotensin 1-4) were obtained by solid-phase peptide synthesis techniques. Strategic replacement of amino acids and/or reduction of sensitive peptide bonds were performed to enhance conjugate resistance against proteolytic enzymes. During 99mTc-labeling, single species radiopeptides, [99mTc]Demotensin 1-4, were easily obtained in high yields and typical specific activities of 1 Ci/micromol. Peptide conjugates displayed a high affinity binding to the human neurotensin subtype 1 receptor (NTS1-R) expressed in colon adenocarcinoma HT-29 or WiDr cells and/or in human tumor sections. [99mTc]Demotensin 1-4 internalized very rapidly in HT-29 or WiDr cells by a NTS1-R-mediated process. [99mTc]Demotensin 3 and 4, which remained stable during 1 h incubation in murine plasma, were selectively studied in nude mice bearing human HT-29 and WiDr xenografts. After injection, [99mTc]Demotensin 3 and 4 effectively and specifically localized in the experimental tumors and were rapidly excreted via the kidneys into the urine, exhibiting overall biodistribution patterns favorable for NTS1-R-targeted tumor imaging in man.
Resumo:
Background: A growing body of literature suggests that caregiving burden is associated with impaired immune system functioning, which may contribute to elevated morbidity and mortality risk among dementia caregivers. However, potential mechanisms linking these relationships are not well understood. The purpose of this study was to investigate whether stress-related experience of depressive symptoms and reductions in personal mastery were related to alterations in ss2-adrenergic receptor sensitivity.Methods: Spousal Alzheimer's caregivers (N = 106) completed measures assessing the extent to which they felt overloaded by their caregiving responsibilities, experienced depressive symptoms, and believed their life circumstances were under their control. We hypothesized that caregivers reporting elevated stress would report increased depressive symptoms and reduced mastery, which in turn would be associated with reduced ss2- adrenergic receptor sensitivity on peripheral blood mononuclear cells (PBMC), as assessed by in vitro isoproterenol stimulation.Results: Regression analyses indicated that overload was negatively associated with mastery (beta = -0.36, p = 0.001) and receptor sensitivity (beta = -0.24, p = 0.030), whereas mastery was positively associated with receptor sensitivity (beta = 0.29, p = 0.005). Finally, the relationship between overload and receptor sensitivity diminshed upon simultaneous entry of mastery. Sobel's test confirmed that mastery significantly mediated some of the relationship between overload and receptor sensitivity (z = -2.02, p = 0.044).Conclusions: These results suggest that a reduced sense of mastery may help explain the association between caregiving burden and reduced immune cell ss2-receptor sensitivity.
Resumo:
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.
Resumo:
Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.