988 resultados para REACTION-LIMITED AGGREGATION
Resumo:
The pp -> pn pi(+) reaction is a channel with the largest total cross section for pp collision in COSY/CSR energy region. In this work, we investigate individual contributions from various N* and Delta* resonances with mass up to about 2 GeV for the pp -> pn pi(+) reaction. We extend a resonance model, which can reproduce the observed total cross section quite well, to give theoretical predictions of various differential cross sections for the present reaction at T-p = 2.88 GeV. It could serve as a reference for identifying new physics in the future experiments at HIRFL-CSR.
Resumo:
The N ∗(1535) resonance contributions to the pn → dφ reaction are evaluated in an effective Lagrangian model. The π-, η-, and ρ-meson exchange are considered. It is shown that the contributions from π- and ρ-meson exchange are dominant, while the contribution from η-meson exchange is negligibly small. Our theoretical results reproduce the experimental data of both total cross section and angular distribution well. This is more evidence that the N ∗(1535) resonance has a large s ¯s component leading to a large coupling to Nφ, which may be the real origin of the Okubo-Zweig-Iizuka rule violation in the πN and pN reactions.
Resumo:
A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.
Resumo:
A theoretical study of the (p) over barp -> (p) over barn pi(+) reaction for antiproton beam energy from 1 to 4 GeV is made by including contributions from various known N* and Delta* resonances. It is found that for the beam energy around 1.5 GeV, the contribution of the Roper resonance N-(1440)* produced by the t-channel sigma exchange dominates over all other contributions. Since such a reaction can be studied in the forthcoming PANDA experiment at the GSI Facility of Antiproton and Ion Research (FAIR), the reaction will be realistically the cleanest place for studying the properties of the Roper resonance and the best place for looking for other "missing" N* resonances with large coupling to N sigma.
Resumo:
We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.
Resumo:
A thick natural uranium target was bombarded with a 60 MeV/u O-18 beam. The neutron-rich isotope Ra-230 as the target residue was produced through the multinucleon transfer reaction (U-238-4p-4n). The barium and radium fraction as BaCl2 precipitate were radiochemically separated first from the mixture of uranium and reaction products. Then, the radium fraction was separated from BaCl2 precipitate by using cation exchange technique. The gamma-ray spectra of the Ra fraction were measured using an HPGe detector. The production cross sections of Ra-230 were obtained by a combination of the radiochemical separation technique and off-line gamma-ray spectroscopy. The cross section of Ra-230 has been determined to be 66 +/- 20 mu b.
Resumo:
The neutron-rich nucleus Li-11 is separated by the radioactive ion beam line RIBLL at HIRFL from the breakup of 50MeV/u C-13 on Be target. The total reaction cross sections for Li-11 at energies range from 25 to 45MeV/u on Si target have been measured by using the transmission method. The experimental data at high and low energies can be fitted well by Glauber model using two Gauss density distribution. The matter radius of Li-11 was also deduced.
Resumo:
We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.
Resumo:
Based on the molecular Coulombic over barrier model for description of slow ion-atom collisions, the reaction window theory related to projectile velocity is presented briefly. According to the theory, the state-selective differential cross sections of single electron capture in O8+ -H, A(8+) -H, Ar8+-He, Ne10+-He and Ar18+-He collisions at different collision velocities are calculated and compared with experimental results. Calculations are also done for single, double, and triple electron capture in N-15(7+)-Ne collisions at fixed velocity of 0.53 a.u., and are compared with experimental data. It is found that the predictions of the final electronic state distribution of captured electron(s) are in agreement with experimental data, and both theory and experiments show that the widths of the reaction window increase with the projectile velocity. The differential cross sections predicted by the theory are larger for smaller Q-values, vice versa, when compared with experimental data.
Resumo:
In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.
Resumo:
Excitation functions of the reaction products B, C, N, O, F and Ne emitted from the dissipative reaction of (19) F+(27) Al have been measured at incident energies from 110.25MeV to 118.75MeV in steps of 250keV. The moments of inertia of the intermediate dinuclear system formed in the reaction are extracted from the energy autocorrelation functions of the products. Comparing the moment of inertia extracted from the experimental data with the calculated one by using the sticking limit, it indicates that the formed dinuclear system has a large deformation in the reaction process.
Resumo:
Within the Boltzmann-Langevin equation, the neutron cluster production cross sections in the reactions induced by Be-14, He-8, He-6, Li-11, B-17, Be-11, C-19 on C-12 at 35MeV/u were studied. The experimental data for (4)n production cross section from Be-14+C-12 at 35MeV/u can be reproduced. It is found that the production cross section of neutron cluster is large in the reaction that the projectile has more halo nucleons. And the projectiles with big mass number are easy to produce the neutron cluster, when they have the same number of halo nucleons. The neutron cluster is probably mainly from the halo nucleons of projectile.
Resumo:
It was based on the comparisons of the variance properties of fragment multiplicities FM's and nuclear stoppings R's for the neutron-halo colliding system with those of FZ's and R's for the proton-halo colliding system with the increases of beam energy in more detail, the closely correlations between the reaction mechanism and the inner structures of halo-nuclei is found. From above comparisons it is found that the variance properties of fragment multiplicities and nuclear stopping with the increases of beam energy are quite different for the neutron-halo and proton-halo colliding systems, such as the effects of loosely bound neutron-halo structure on the fragment multiplicities and nuclear stopping are obviously larger than those for the proton-halo colliding system. This is due to that the structures of halo-neutron nucleus Li-11 is more loosely than that of the proton-halo nucleus Al-23 in this paper. In this case, the fragment multiplicity and nuclear stopping of halo nuclei may be used as a possible probe for studying the reaction mechanism and the correlation between the reaction mechanism and the inner structure of halo-nuclei.