995 resultados para REACTION LAYER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oscillatory behaviour of the Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) regarding two combinations of two-layer fluid systems has been investigated theoretically and numerically. For the two-layer system of Silicone oil (10cSt) over Fluorinert (FC70), both linear instability analysis and 2D numerical simulation show that the instability of the system depends strongly on the depth ratio Hr = H1/H2 of the two-layer liquid. The oscillatory regime at the onset of R-M-B convection enlarges with reducing Γ = Ra/Ma values. In the two-layer system of Silicone oil (2cSt) over water, it loses its stability and onsets to steady convection at first, then the steady convection bifurcates to oscillatory convection with increasing Rayleigh number Ra. This behaviour was found through numerical simulation above the onset of steady convection in the case of r = 2.9, ε=(Ra-Ruc)/Rac = 1.0, and Hr = 0.5. Our findings are different from the previous study of the Rayleigh-Benard instability and show the strong effects of the thermocapillary force at the interface on the time-dependent oscillations at or after the onset of convection. We propose a secondary oscillatory instability mechanism to explain the experimental observation of Degen et al. [Phys. Rev. E, 57 (1998), 6647-6659].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulations of a spatially evolving supersonic flat-plate turbulent boundary layer flow with free Mach number M = 2.25 and Reynolds number Re = 365000/in are performed. The transition process from laminar to turbulent flow is obtained by solving the three-dimensional compressible Navier-Stokes, equations, using high-order accurate difference schemes. The obtained statistical results agree well with the experimental and theoretical data. From the numerical results it can be seen that the transition process under the considered conditions is the process which skips the Tolimien-Schlichting instability and the second instability through the instability of high gradient shear layer and becomes of laminar flow breakdown. This means that the transition process is a bypass-type transition process. The spanwise asymmetry of the disturbance locally upstream imposed is important to induce the bypass-type transition. Furthermore, with increasing the time disturbance frequency the transition will delay. When the time disturbance frequency is large enough, the transition will disappear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oscillatory thermocapillary convection and hydrothermal wave in a shallow liquid layer, where a temperature difference is applied between two parallel sidewalls, have been numerically investigated in a two-dimensional model. The oscillatory thermocapillary convection and hydrothermal wave appear if the Marangoni number is larger than a critical value. The critical phase speed and critical wave number of the hydrothermal wave agree with the ones given analytically by Smith and Davis in the microgravity environment, and it travels in the direction opposed to the surface flow. Another wave traveled downstream in addition to the hydrothermal wave traveled upstream was observed in the case of earth gravity condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used scanning gate microscopy to explore the local conductivity of a current-annealed graphene flake. A map of the local neutrality point (NP) after annealing at low current density exhibits micron-sized inhomogeneities. Broadening of the local e-h transition is also correlated with the inhomogeneity of the NP. Annealing at higher current density reduces the NP inhomogeneity, but we still observe some asymmetry in the e-h conduction. We attribute this to a hole-doped domain close to one of the metal contacts combined with underlying striations in the local NP. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel self-assembled dual-layer film as apotential excellent lubricant for micromachines was successfully prepared on single-crystal silicon substrate by chemical adsorption of stearic acid (STA) molecules on self-assembled monolayer of 3-aminopropyltri

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rayleigh–Marangoni–Bénard convective instability (R–M–B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen’s experimental observation with the previous linear stability analysis results of Renardy et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A power LDMOS on partial silicon on insulator (PSOI) with a variable low-κ dielectric (VLKD) buried layer and a buried p (BP) layer is proposed (VLKD BPSOI). At a low κ value, the electric field strength in the buried dielectric (EI) is enhanced, and a Si window makes the substrate share the vertical voltage drop, leading to a high vertical breakdown voltage (BV). Moreover, three interface field peaks are introduced by the BP, the Si window, and the VLKD, which modulate the fields in the SOI layer, the VLKD layer, and the substrate; consequently, a high BV is obtained. Furthermore, the BP reduces the specific on-resistance (Ron), and the Si window alleviates the self-heating effect (SHE). The BV for VLKD BPSOI is enhanced by 34.5%, and Ron is decreased by 26.6%, compared with those for the conventional PSOI, and VLKD BPSOI also maintains a low SHE. © 2006 IEEE.