971 resultados para RAW 264.7 cells
Resumo:
The prevalence of Escherichia coli O157:H7 infection in birds is low but several deliberate inoculation studies show that poultry are readily and persistently infected by this organism indicating a possible threat to public health. The mechanisms of colonisation of poultry are not understood and the aim is to establish models to study the interaction of E. coli O157:H7, at the cellular and whole animal levels. A non-toxigenic E. coli O157:H7 (NCTC 12900) was used in adherence assays with an avian epithelial cell line (Div-1) and used to inoculate 1-day-old SPF chicks. In vitro, NCTC 12900 induced micro-colonies associated with cytoskeletal arrangements and pedestal formation with intimate bacterial attachment. In the 1-day-old SPF chick, a dose of 1 x 10(5) cfu resulted in rapid and extensive colonisation of the gastrointestinal tract and transient colonisation of the liver and spleen. The number of E. coli O157:H7 organisms attained approximately 10(8) cfu/ml caecal homogenate 24 h after inoculation and approximately 10(7) cfu/ml caecal homogenate was still present at day 92. Faecal shedding persisted for 169 days, ceasing 9 days after the birds came into lay and 6% of eggs were contaminated on the eggshell. Histological analysis of tissue samples from birds dosed with 1 x 10(7) cfu gave evidence for E coli O157:H7 NCTC 12900 induced micro-colonies on the caecal mucosa, although evidence for attaching effacing lesions was equivocal. These models may be suitable to study those factors of E. coli O157:H7 that mediate persistent colonisation in avian species.
Resumo:
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.
Resumo:
BACKGROUND & AIMS: The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. METHODS: IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. RESULTS: Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). CONCLUSIONS: Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
Resumo:
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer–AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM–Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 × 10− 8 M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2–0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [3H]androstenedione both AGM and HPMA copolymer–GFLG–AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.
Resumo:
Efficient transport of stem/progenitor cells without affecting their survival and function is a key factor in any practical cell-based therapy. However, the current approach using liquid nitrogen for the transfer of stem cells requires a short delivery time window is technically challenging and financially expensive. The present study aims to use semipermeable alginate hydrogels (crosslinked by strontium) to encapsulate, store, and release stem cells, to replace the conventional cryopreservation method for the transport of therapeutic cells within world-wide distribution time frame. Human mesenchymal stem cell (hMSC) and mouse embryonic stem cells (mESCs) were successfully stored inside alginate hydrogels for 5 days under ambient conditions in an air-tight environment (sealed cryovial). Cell viability, of the cells extracted from alginate gel, gave 74% (mESC) and 80% (hMSC) survival rates, which compared favorably to cryopreservation. More importantly, the subsequent proliferation rate and detection of common stem cell markers (both in mRNA and protein level) from hMSCs and mESCs retrieved from alginate hydrogels were also comparable to (if not better than) results gained following cryopreservation. In conclusion, this new and simple application of alginate hydrogel encapsulation may offer a cheap and robust alternative to cryopreservation for the transport and storage of stem cells for both clinical and research purposes.
Resumo:
Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (P=0.05) their growth. As secreted protein acidic and rich in cysteine was previously reported to attenuate proliferation of epithelial cells, this protein may be responsible, at least in part, for inhibition of corneal epithelial cell proliferation. We conclude that limbal epithelial stem cells encapsulated in alginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins.
Resumo:
The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
Resumo:
The mammalian lignan, enterolactone, has been shown to reduce the proliferation of the earlier stages of prostate cancer at physiological concentrations in vitro. However, efficacy in the later stages of the disease occurs at concentrations difficult to achieve through dietary modification. We have therefore investigated what concentration(s) of enterolactone can restrict proliferation in multiple stages of prostate cancer using an in vitro model system of prostate disease. We determined that enterolactone at 20 μM significantly restricted the proliferation of mid and late stage models of prostate disease. These effects were strongly associated with changes in the expression of the DNA licencing genes (GMNN, CDT1, MCM2 and 7), in reduced expression of the miR-106b cluster (miR-106b, miR-93, and miR-25), and in increased expression of the PTEN tumour suppressor gene. We have shown anti-proliferative effects of enterolactone in earlier stages of prostate disease than previously reported and that these effects are mediated, in part, by microRNA-mediated regulation.
Resumo:
As a model for brain inflammation we previously studied transcriptional profiles of tumor necrosis factor-alpha (TNF)treated U373 astroglioma cells. In previous work we were able to demonstrate that the chemokine monocyte chemoattractant protein-1 (MCP-1, SCYA2, CCL2, MCAF) expression in U373 cells was inducible by TNF-alpha treatment. Demonstrably MCP-1 mRNA and protein expression in U373 cells was sustainable over time and at the highest level of all genes analyzed (Schwamborn et al., BMC Genomics 4, 46, 2003). In the hematopoietic system MCP-1 is a CC chemokine that attracts monocytes, memory T lymphocytes, and natural killer cells. In search of further functions in brain inflammation we tested the hypothesis that MCP-1 acts as a chemokine on neural stem cells. Here we report that MCP-1 activates the migration capacity of rat-derived neural stem cells. The migration of stem cells in a Boyden chamber analysis was elevated after stimulation with MCP-1. Time-lapse video microscopy visualized the migration of single stem cells from neurospheres in MCP-1-treated cultures, whereas untreated cultures depicted no migration at all, but showed signs of sprouting. Expression of the MCP-1 receptor CCR2 in neurosphere cultures was verified by RT-PCR and immunofluorescence microscopy. Supernatants from TNF-treated U373 cells also induced migration of neural stem cells.
Resumo:
BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.
Resumo:
One of the challenges in stem cell research is to avoid transformation during cultivation. We studied high passage subventricular zone derived neural stem cells (NSCs) cultures of adult rats in the absence of growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). We termed this culture exogenous growth factor independent neural stem cells (GiNSCs). GiNSCs expressed stemness markers, displayed a high constitutive NF-kappaB activity and an increased, aberrant, polyploid DNA content. GiNSCs showed a tumorigenic phenotype and formed colonies in a soft agar assay. Microarray analysis showed the up-regulation of the NF-kappaB target gene vascular endothelial growth factor (VEGF). In contrast, proneuronal genes were down-regulated. Under neuronal differentiation conditions GiNSCs adopted a glioma-like phenotype, with nuclear p53, preserving high amounts of Nestin positive cells and prolonged proliferation. Neutralization of VEGF strongly inhibited proliferation and induced differentiation. In a gain of function approach, the transfection of NSCs with constitutively active upstream kinase IKK-2 led to constitutively activated NF-kappaB, proliferation in absence of growth factors and augmented VEGF secretion. In a rescue experiment a reduction of NF-kappaB activity by overexpression of IkappaB-AA1 was able to shift the morphology toward an elongated cell form, increased cell death, and decreased proliferation. Thus GiNSCs may provide a potent tool in cancer research, as their exogenous cytokine independent proliferation and their constitutively high NF-kappaB expression presumes cancerous properties observed in gliomas. In addition, this study might add a novel mechanism for detecting oncogenic transformation in therapeutic stem cell cultures.
Resumo:
Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of anti-tumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to non-specific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an anti-tumour mAb (the anti-hCD 20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods and yield, molecular substitution ratio, retention of TLR7 activity and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150 : rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method, and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional crosslinker was firstly reacted with rituximab, and secondly to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells whilst no non-specific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.
Resumo:
We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of the present study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to HEK-293T (human embryonic kidney) cells in which the HIV can be grown. Furthermore, HEK-293T cells activate both platelets and CLEC-2-transfected DT-40 B-cells. The transmembrane protein podoplanin was identified on HEK-293T cells and was demonstrated to mediate both binding of HEK-293T cells to CLEC-2 and HEK-293T cell activation of CLEC-2-transfected DT-40 B-cells. Podoplanin is expressed on renal cells (podocytes). Furthermore, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5+/-3.7 microM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells.
Resumo:
Aluminium (Al) has been measured in human breast tissue, and may be a contributory factor in breast cancer development. At the 10th Keele meeting, we reported that long-term exposure to Al could increase migratory properties of oestrogen-responsive MCF-7 human breast cancer cells suggesting a role for Al in the metastatic process. We now report that long-term exposure (20–25 weeks) to Al chloride or Al chlorohydrate at 10−4 M or 10−5Mconcentrations can also increase themigration of oestrogen unresponsiveMDA-MB-231 human breast cancer cells as measured using time-lapse microscopy and xCELLigence technology. In parallel, Al exposure was found to give rise to increased secretion of active matrixmetalloproteinaseMMP9 as measured by zymography, and increased intracellular levels of activated MMP14 as measured by western immunoblotting. These results demonstrate that Al can increase migration of human breast cancer cells irrespective of their oestrogen responsiveness, and implicate alterations to MMPs as a potential mechanism worthy of further study.
Resumo:
Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.