1000 resultados para Pyroclastic flow


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the wave pattern characteristics of shock-induced two-phase nozzle Hows with the quiescent or moving dusty gas ahead of the incident-shock front has been investigated by using high-resolution numerical method. As compared with the corresponding results in single-phase nozzle flows of the pure gas, obvious differences between these two kinds of flows can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed, It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. (C) 1997 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the analysis of molecular gas dynamics, the drag and moment acting on an ellipsoid particle of revolution X-2/a(2) + Y-2/a(2) + Z(2)/c(2) = 1, as an example of nonspherical particles, are studied under the condition of free-molecular plasma flow with thin plasma sheaths. A nonzero moment which causes nonspherical particle self-oscillation and self-rotation around its own axis in the plasma flow-similar to the pitching moment in aerodynamics-is discovered for the first time. When the ratio of axis length c/a is unity, the moment is zero and the drag formula are reduced to the well-known results of spherical particles. The effects of the particle-plasma relative velocity, the plasma temperature, and the particle materials on the drag and moment are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220flows at the same Reynolds number is related with different initial conditions which on be generated by different accelerations of the inner sphere. Generation of zero-or two-vortex flow depends mainly on the acceleratio n, but that of one-vortex flow also depends on the perturbation breaking the equatorial symmetry. The mechanism of development of a saddle point in the meridional plane at higher Re number and its role in the formation of two-vortex flow are analyzed.