929 resultados para Proliferative Diabetic-retinopathy
Resumo:
Nonobese diabetic mice spontaneously develop diabetes that is caused by autoimmune cell-mediated destruction of pancreatic beta cells. Here we report that surgical removal of 90% of pancreatic tissue before onset of insulitis induced a long-term diabetes-free condition in nonobese diabetic mice. Pancreatectomy after development of moderate insulitis had no effect on the course of diabetes. The effect of pancreatectomy was abrogated with subsequent development of diabetes by infusion of islet-cell-specific T lymphocytes and by transplantation of pancreatic islets. Lymphocytes from pancreatectomized diabetes-free mice exhibited low response to islet cells but responded normally to alloantigens. These results suggest that the islet cell mass plays a critical role in development of autoimmune diabetes.
Resumo:
Hyperglycemia is a common feature of diabetes mellitus. It results from a decrease in glucose utilization by the liver and peripheral tissues and an increase in hepatic glucose production. Glucose phosphorylation by glucokinase is an initial event in glucose metabolism by the liver. However, glucokinase gene expression is very low in diabetic animals. Transgenic mice expressing the P-enolpyruvate carboxykinase/glucokinase chimeric gene were generated to study whether the return of the expression of glucokinase in the liver of diabetic mice might prevent metabolic alterations. In contrast to nontransgenic mice treated with streptozotocin, mice with the transgene previously treated with streptozotocin showed high levels of both glucokinase mRNA and its enzyme activity in the liver, which were associated with an increase in intracellular levels of glucose 6-phosphate and glycogen. The liver of these mice also showed an increase in pyruvate kinase activity and lactate production. Furthermore, normalization of both the expression of genes involved in gluconeogenesis and ketogenesis in the liver and the production of glucose and ketone body by hepatocytes in primary culture were observed in streptozotocin-treated transgenic mice. Thus, glycolysis was induced while gluconeogenesis and ketogenesis were blocked in the liver of diabetic mice expressing glucokinase. This was associated with normalization of blood glucose, ketone bodies, triglycerides, and free fatty acids even in the absence of insulin. These results suggest that the expression of glucokinase during diabetes might be a new approach to the normalization of hyperglycemia.
Resumo:
Leptin and its receptor, obese receptor (OB-R), comprise an important signaling system for the regulation of body weight. Splice variants of OB-R mRNA encode proteins that differ in the length of their cytoplasmic domains. We cloned a long isoform of the wild-type leptin receptor that is preferentially expressed in the hypothalamus and show that it can activate signal transducers and activators of transcription (STAT)-3, STAT-5, and STAT-6. A point mutation within the OB-R gene of diabetic (db) mice generates a new splice donor site that dramatically reduces expression of this long isoform in homozygous db/db mice. In contrast, an OB-R protein with a shorter cytoplasmic domain is present in both db/db and wild-type mice. We show that this short isoform is unable to activate the STAT pathway. These data provide further evidence that the mutation in OB-R causes the db/db phenotype and identify three STAT proteins as potential mediators of the anti-obesity effects of leptin.
Resumo:
Graft-versus-host disease (GVHD) is a T-cell-mediated disease of transplanted donor T cells recognizing host alloantigens. Data presented in this report show, to our knowledge, for the first time that a synthetic copolymer of the amino acids L-Glu, L-Lys, L-Ala, and L-Tyr (molecular ratio, 1.9:6.0:4.7:1.0; Mr, 6000-8500) [corrected], termed GLAT, with promiscuous binding to multiple major histocompatibility complex class II alleles is capable of preventing lethal GVHD in the B10.D2 --> BALB/c model (both H-2d) across minor histocompatibility barriers. Administration of GLAT over a limited time after transplant significantly reduced the incidence, onset, and severity of disease. GLAT also improved long-term survival from lethal GVHD: 14/25 (56%) of experimental mice survived > 140 days after transplant compared to 2/26 of saline-treated or to 1/10 of hen egg lysozyme-treated control mice (P < 0.01). Long-term survivors were documented to be fully chimeric by PCR analysis of a polymorphic microsatellite region in the interleukin 1beta gene. In vitro, GLAT inhibited the mixed lymphocyte culture in a dose-dependent fashion across a variety of major barriers tested. Furthermore, GLAT inhibited the response of nylon wool-enriched T cells to syngeneic antigen-presenting cells presenting minor histocompatibility antigens. Prepulsing of the antigen-presenting cells with GLAT reduced the proliferative response, suggesting that GLAT inhibits antigen presentation.
Resumo:
The peptide-binding motif of HLA-A29, the predisposing allele for birdshot retinopathy, was determined after acid-elution of endogenous peptides from purified HLA-A29 molecules. Individual and pooled HPLC fractions were sequenced by Edman degradation. Major anchor residues could be defined as glutamate at the second position of the peptide and as tyrosine at the carboxyl terminus. In vitro binding of polyglycine synthetic peptides to purified HLA-A29 molecules also revealed the need for an auxiliary anchor residue at the third position, preferably phenylalanine. By using this motif, we synthesized six peptides from the retinal soluble antigen, a candidate autoantigen in autoimmune uveoretinitis. Their in vitro binding was tested on HLA-A29 and also on HLA-B44 and HLA-B61, two alleles sharing close peptide-binding motifs. Two peptides derived from the carboxyl-terminal sequence of the human retinal soluble antigen bound efficiently to HLA-A29. This study could contribute to the prediction of T-cell epitopes from retinal autoantigens implicated in birdshot retinopathy.
Resumo:
Studies on circulating T cells and antibodies in newly diagnosed type 1 diabetic patients and rodent models of autoimmune diabetes suggest that beta-cell membrane proteins of 38 kDa may be important molecular targets of autoimmune attack. Biochemical approaches to the isolation and identification of the 38-kDa autoantigen have been hampered by the restricted availability of islet tissue and the low abundance of the protein. A procedure of epitope analysis for CD4+ T cells using subtracted expression libraries (TEASEL) was developed and used to clone a 70-amino acid pancreatic beta-cell peptide incorporating an epitope recognized by a 38-kDa-reactive CD4+ T-cell clone (1C6) isolated from a human diabetic patient. The minimal epitope was mapped to a 10-amino acid synthetic peptide containing a DR1 consensus binding motif. Data base searches did not reveal the identity of the protein, though a weak homology to the bacterial superantigens SEA (Streptococcus pyogenes exotoxin A) and SEB (Staphylococcus aureus enterotoxin B) (23% identity) was evident. The TEASEL procedure might be used to identify epitopes of other autoantigens recognized by CD4+ T cells in diabetes as well as be more generally applicable to the study low-abundance autoantigens in other tissue-specific autoimmune diseases.
Resumo:
Recent studies have demonstrated that the overexpression of the c-myc gene in the liver of transgenic mice leads to an increase in both utilization and accumulation of glucose in the liver, suggesting that c-Myc transcription factor is involved in the control of liver carbohydrate metabolism in vivo. To determine whether the increase in c-Myc might control glucose homeostasis, an intraperitoneal glucose tolerance test was performed. Transgenic mice showed lower levels of blood glucose than control animals, indicating that the overexpression of c-Myc led to an increase of blood glucose disposal by the liver. Thus, the increase in c-Myc might counteract diabetic hyperglycemia. In contrast to control mice, transgenic mice treated with streptozotocin showed normalization of concentrations of blood glucose, ketone bodies, triacylglycerols and free fatty acids in the absence of insulin. These findings resulted from the normalization of liver metabolism in these animals. While low glucokinase activity was detected in the liver of diabetic control mice, high levels of both glucokinase mRNA and enzyme activity were noted in the liver of streptozotocin-treated transgenic mice, which led to an increase in intracellular levels of glucose 6-phosphate and glycogen. The liver of these mice also showed an increase in pyruvate kinase activity and lactate production. Furthermore, normalization of both the expression of genes involved in the control of gluconeogenesis and ketogenesis and the production of glucose and ketone bodies was observed in streptozotocin-treated transgenic mice. Thus, these results suggested that c-Myc counteracted diabetic alterations through its ability to induce hepatic glucose uptake and utilization and to block the activation of gluconeogenesis and ketogenesis.
Resumo:
Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.
Resumo:
The high-affinity interleukin 2 (IL-2) receptor (IL-2R) consists of three subunits: the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two members of the Janus kinase family, Jak1 and Jak3, are associated with IL-2R beta c and IL-2R gamma c, respectively, and they are activated upon IL-2 stimulation. The cytokine-mediated Jak kinase activation usually results in the activation of a family of latent transcription factors termed Stat (signal transducer and activator of transcription) proteins. Recently, the IL-2-induced Stat protein was purified from human lymphocytes and found to be the homologue of sheep Stat5/mammary gland factor. We demonstrate that the human Stat5 is activated by IL-2 and that Jak3 is required for the efficient activation. The cytoplasmic region of the IL-2R beta c chain required for activation of Stat5 is mapped within the carboxyl-terminal 147 amino acids. On the other hand, this region is not essential for IL-2-induced cell proliferation.
Resumo:
Purpose. Postnatal exposure to hyperoxia destroys the plexiform layers of the neonatal rat retina, resulting in significant electroretinographic anomalies. The purpose of this study was to identify the mechanisms at the origin of this loss. Methods. Sprague-Dawley (SD) and Long Evans (LE) rats were exposed to hyperoxia from birth to postnatal day (P) 6 or P14 and from P6 to P14, after which rats were euthanatized at P6, P14, or P60. Results. At P60, synaptophysin staining confirmed the lack of functional synaptic terminals in SD (outer plexiform layer [OPL]) and LE (OPL and inner plexiform layer [IPL]) rats. Uneven staining of ON-bipolar cell terminals with mGluR6 suggests that their loss could play a role in OPL thinning. Protein kinase C(PKC)-α and recoverin (rod and cone ON-bipolar cells, respectively) showed a lack of dendritic terminals in the OPL with disorganized axonal projections in the IPL. Although photoreceptor nuclei appeared intact, a decrease in bassoon staining (synaptic ribbon terminals) suggests limited communication to the inner retina. Findings were significantly more pronounced in LE rats. An increase in TUNEL-positive cells was observed in LE (inner nuclear layer [INL] and outer nuclear layer [ONL]) and SD (INL) rats after P0 to P14 exposure (425.3%, 102.2%, and 146.3% greater than control, respectively [P < 0.05]). Conclusions. Results suggest that cell death and synaptic retraction are at the root of OPL thinning. Increased TUNEL-positive cells in the INL confirm that cells die, at least in part, because of apoptosis. These findings propose a previously undescribed mechanism of cell death and synaptic retraction that are likely at the origin of the functional consequences of hyperoxia.
Resumo:
Introduction: Physical activity is related to health and lifestyle and should be part of the daily routine of all individuals since it brings many benefits to the body. Ains: To study the adolescent population‘s body mass index (BMI). To study the relation between physical activity and gender. Materials and Methods: We performed a quantitative, observational, analytic and cross-sectional study. After the use of exclusion criteria, a sample of 36 individuals was selected from a population of diabetic adolescents. A validated questionnaire was applied to collected physical activity and personal data. SPSS 22.0 was used to treat the data. The chi-square test was applied to study the relation between the level of physical activity and gender; Fisher’s exact test was applied to study the relation between level of physical activity and BMI. Results and discussion: The chi-square test showed a significant relation between the level of physical activity and gender (p-value = 0.018) with moderate intensity (phi = .4), which corroborates other national and worldwide studies. Fisher’s exact test showed no relation between BMI and the level of physical activity (p-value=0,646). Conclusion: 86,1% of the sampled diabetic adolescents are eutrophic, and 66,7% are considered insufficient active. A significant relation was found between gender and the level of physical activity. No relation was found between BMI and level of physical activity.
Resumo:
Federal Highway Administration, Office of Motor Carriers, Washington, D.C.
Resumo:
Mode of access: Internet.