998 resultados para Probit models
Resumo:
It is generally accepted that between 70 and 80% of manufacturing costs can be attributed to design. Nevertheless, it is difficult for the designer to estimate manufacturing costs accurately, especially when alternative constructions are compared at the conceptual design phase, because of the lack of cost information and appropriate tools. In general, previous reports concerning optimisation of a welded structure have used the mass of the product as the basis for the cost comparison. However, it can easily be shown using a simple example that the use of product mass as the sole manufacturing cost estimator is unsatisfactory. This study describes a method of formulating welding time models for cost calculation, and presents the results of the models for particular sections, based on typical costs in Finland. This was achieved by collecting information concerning welded products from different companies. The data included 71 different welded assemblies taken from the mechanical engineering and construction industries. The welded assemblies contained in total 1 589 welded parts, 4 257 separate welds, and a total welded length of 3 188 metres. The data were modelled for statistical calculations, and models of welding time were derived by using linear regression analysis. Themodels were tested by using appropriate statistical methods, and were found to be accurate. General welding time models have been developed, valid for welding in Finland, as well as specific, more accurate models for particular companies. The models are presented in such a form that they can be used easily by a designer, enabling the cost calculation to be automated.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha-1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.
Resumo:
The present study tests the relationships between the three frequently used personality models evaluated by the Temperament Character Inventory-Revised (TCI-R), Neuroticism Extraversion Openness Five Factor Inventory – Revised (NEO-FFI-R) and Zuckerman-Kuhlman Personality Questionnaire-50- Cross-Cultural (ZKPQ-50-CC). The results were obtained with a sample of 928 volunteer subjects from the general population aged between 17 and 28 years old. Frequency distributions and alpha reliabilities with the three instruments were acceptable. Correlational and factorial analyses showed that several scales in the three instruments share an appreciable amount of common variance. Five factors emerged from principal components analysis. The first factor was integrated by A (Agreeableness), Co (Cooperativeness) and Agg-Host (Aggressiveness-Hostility), with secondary loadings in C (Conscientiousness) and SD (Self-directiveness) from other factors. The second factor was composed by N (Neuroticism), N-Anx (Neuroticism-Anxiety), HA (Harm Avoidance) and SD (Self-directiveness). The third factor was integrated by Sy (Sociability), E (Extraversion), RD (Reward Dependence), ImpSS (Impulsive Sensation Seeking) and NS (novelty Seeking). The fourth factor was integrated by Ps (Persistence), Act (Activity), and C, whereas the fifth and last factor was composed by O (Openness) and ST (Self- Transcendence). Confirmatory factor analyses indicate that the scales in each model are highly interrelated and define the specified latent dimension well. Similarities and differences between these three instruments are further discussed.
Resumo:
The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.
Resumo:
En el presente trabajo se presenta una revisión sobre los modelos forestales desarrollados en España durante los últimos años, tanto para la producción maderable como no maderable y, para la dinámica de los bosques (regeneración, mortalidad). Se presentan modelos tanto de rodal completo como de clases diamétricas y de árbol individual. Los modelos desarrollados hasta la fecha se han desarrollado a partir de datos procedentes de parcelas permanentes, ensayos y el Inventario Forestal Nacional. En el trabajo se muestran los diferentes submodelos desarrollados hasta la fecha, así como las plataformas informáticas que permiten utilizar dichos modelos. Se incluyen las principales perspectivas de desarrollo de la modelización forestal en España.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.
Resumo:
Occupational exposure modeling is widely used in the context of the E.U. regulation on the registration, evaluation, authorization, and restriction of chemicals (REACH). First tier tools, such as European Centre for Ecotoxicology and TOxicology of Chemicals (ECETOC) targeted risk assessment (TRA) or Stoffenmanager, are used to screen a wide range of substances. Those of concern are investigated further using second tier tools, e.g., Advanced REACH Tool (ART). Local sensitivity analysis (SA) methods are used here to determine dominant factors for three models commonly used within the REACH framework: ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5. Based on the results of the SA, the robustness of the models is assessed. For ECETOC, the process category (PROC) is the most important factor. A failure to identify the correct PROC has severe consequences for the exposure estimate. Stoffenmanager is the most balanced model and decision making uncertainties in one modifying factor are less severe in Stoffenmanager. ART requires a careful evaluation of the decisions in the source compartment since it constitutes ∼75% of the total exposure range, which corresponds to an exposure estimate of 20-22 orders of magnitude. Our results indicate that there is a trade off between accuracy and precision of the models. Previous studies suggested that ART may lead to more accurate results in well-documented exposure situations. However, the choice of the adequate model should ultimately be determined by the quality of the available exposure data: if the practitioner is uncertain concerning two or more decisions in the entry parameters, Stoffenmanager may be more robust than ART.
Resumo:
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.
Resumo:
El bosc mediterrani ens proporciona una gran quantita de productes i serveis que poden contribuir a la riquesa i el benestar de la societat. La combinació dels diferents productes i serveis a través de models de gestió forestal multiobjectiu, com és el cas de la producció de fusta i bolets, permet avançar cap a la millora del potencial productiu del bosc i la preservació de les masses forestals.
Resumo:
We study general models of holographic superconductivity parametrized by four arbitrary functions of a neutral scalar field of the bulk theory. The models can accommodate several features of real superconductors, like arbitrary critical temperatures and critical exponents in a certain range, and perhaps impurities or boundary or thickness effects. We find analytical expressions for the critical exponents of the general model and show that they satisfy the Rushbrooke identity. An important subclass of models exhibit second order phase transitions. A study of the specific heat shows that general models can also describe holographic superconductors undergoing first, second and third (or higher) order phase transitions. We discuss how small deformations of the HHH model can lead to the appearance of resonance peaks in the conductivity, which increase in number and become narrower as the temperature is gradually decreased, without the need for tuning mass of the scalar to be close to the Breitenlohner-Freedman bound. Finally, we investigate the inclusion of a generalized ¿theta term¿ producing Hall effect without magnetic field.