939 resultados para Principle of individuation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

设计了一种用于空间对接缓冲试验台的新型高动态响应助推力模拟装置。介绍了助推装置的机构组成和原理,计算了助推气动系统的响应时间,并分析了助推运动过程。研究表明:该助推装置的响应速度快、精度高,助推力方向实时通过模拟飞行器的质心,满足设计要求。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在空间对接机构地面缓冲实验平台上,为了模拟空间失重状态,研制了一种高精度、高响应速度的主动对接环重力平衡装置。介绍了对接环重力平衡装置的机构原理。对对接过程随动装置的随动性对系统的干扰进行了详细分析。进行了重力平衡器相关实验,从实验数据和理论分析可以得出:所设计的重力平衡装置完全满足对摩擦阻力和惯性阻力设计指标的要求,重力平衡达到1.1%的精度。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

介绍了长焊缝激光拼焊系统的工作原理和控制要求。针对长焊缝激光拼焊的难点,提出了焊缝塑性成形原理,采用碾压轮对板材焊缝进行碾压预处理提高定位精度。阐述了牵引电机同步控制原理和碾压轮力控制原理。详细介绍了该系统的组成和工作原理,确定了以三菱PLC为核心的长焊缝激光拼焊的控制系统,说明了其硬件组成、软件设计和控制系统的抗干扰措施。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

介绍了Zernike矩及基于Zernike矩的图像亚像素边缘检测原理,针对Ghosal提出的基于Zernike矩的亚像素图像边缘检测算法检测出的图像存在边缘较粗及边缘亚像素定位精度低等不足,提出了一种改进算法.推导了7×7 Zernike矩模板系数,提出一种新的边缘判断依据.改进的算法能较好检测图像边缘并实现了较高的边缘定位.最后,设计了3组不同的实验.实验结果同Canny算子及Ghosal算法相比,证明了改进算法的优越性.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

根据数字液压驱动单元的运行原理,分析了在空载与加载情况下该数字驱动单元的内部液体流动状态,并以这一流动状态原理为依据,改进设计了传统的液控单向阀。数字液压驱动单元样机及试验结果表明:该数字液压驱动单元与应用传统液控单向阀体的驱动单元相比,具有更加紧凑的体积、更高的响应速度及运行可靠性和显著的节能效果。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文介绍了一种新型涂胶机控制系统的设计,详细描述了系统的原理和硬件功能。涂胶机是汽车变速箱装配流水线上最重要的部分之一。该机除具有自动涂胶功能、自动检测报警功能外,还能与装配管理系统联网,实现网络化管理与控制功能。整个系统采用运动控制器、伺服电机等控制部件,为变速箱涂胶提供了安全可靠的质量保证。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

文章介绍了自组织神经网络在故障诊断方面的应用原理,针对自组织神经网络实现问题提出了一种通过在LabVIEW调用MATLAB应用程序实现自组织神经网络的方法。并通过轴承故障诊断的实例,证明了这种方法的有效性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

分析了Protos70卷接机组重量测控系统的工作原理,根据烟支密度脉冲信号及同步信号计算单支烟重量作为控制标准。采用DSP处理器为核心单元完成对烟支重量的计算,针对软件中烟条重量的算法进行了优化,提出计算过程中对程序运行和变量的优化方法以保证系统工作的实时性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在对自动化装备技术改造的过程中,需要用“电子齿轮多轴交流伺服系统”来取代使用效果欠佳的机械齿轮系统.介绍了交流伺服传动技术在某大型卷接机组中应用的总体设计方案,详细论述了该系统的工作原理,阐述了工控机、DSP、PLC及多轴伺服控制器在该装备中的综合运用.并以安川多轴伺服控制器为例,详细介绍了该装备中引入多轴伺服控制器的硬件、软件设计.实际应用表明,该设计是成功的,各项性能指标均优于原来的机械装置,能够有效降低噪音,减少能耗.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

文章讲述了交通监控系统中应用视频图像流来跟踪运动目标并对目标进行分类的具体过程和原则.基于目标检测提出了双差分的目标检测算法,目标分类应用到了连续时间限制和最大可能性估计的原则,目标跟踪则结合检测到的运动目标图像和当前模板进行相关匹配.实验结果表明,该过程能够很好地探测和分类目标,去除背景信息的干扰,并能够在运动目标部分被遮挡、外观改变和运动停止等情况下连续地跟踪目标.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the development of both seismic theory and computer technology, numerical modeling technology of seismic wave has achieved great advancement during the past half century. The current methods under development include finite differentiation method (FDM), finite element method (FEM), pseudospectral method (PSM), integral equation method (IEM) and spectral element method (SEM). They exert their very important roles in every corner of seismology and seismic prospecting. Large quantity of researches towards spectral element method in the end of last century bring this method to a new era, which results in perfect solution of many difficult problems. However, parts of posterior works such as seismic migration and inversion which base on spectral element method have never been studied widely at least up to the present whereas are of importance to seismic imaging and seismic wave propagation. Based on previous work, this paper uses spectral element method to investigate the characteristics and laws of the seismic wave propagation in isotropic and anisotropic media. By thoroughly studying this high-accuracy method, we implement a kind of reverse-time pre- and post-stack migration based on SEM. In order to verify the validity of the SEM method, we have simulated the propagation of seismic wave in several different models. The simulation results show that: (1) spectral element method can be used to model any complex models and the computational results are comparable with the expected results and the analytic results; (2) the optimum accuracy can be achieved when the rank is between 4 and 9. When it is below 4, the dispersion may occur; and when it is above 9, the time step-length will be changed accordingly with the reducing space step-length in order to keep the computation stability. This will exponentially increase the computation time and at the same time the memory even if simulating the same media. This paper also applies explosive reflection surface imaging technology, time constancy principle of wave-filed extrapolation and least travetime raytracing technology of surface source to SEM pre- and post-stack migration of isotropic and anisotropic media. All imaging results derived by the above methods agree well with the real geological models and the position of interface and inflexions can also return to their right location well. This indicates that the method proposed in this paper is a kind of technology with high accuracy and robust stability. It can serve as an alternative method in real seismic data processing. All these work can boost the development of high-accuracy seismic imaging, and therefore have significant inference value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

China’s annual oil import volume has been increasing in recent years, but the oil price in the international market fluctuates and poses a severe threat to China’s economic development and national security. Therefore, it is of great importance to study the gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea. Yellow Sea has widespread and thick Mesozoic and Paleozoic strata that contain multilayer source rock. Hence, Yellow Sea Mesozoic and Paleozoic strata have good conditions of forming Pre-Cenozoic hydrocarbon reservoirs. Pre-Cenozoic Residual Basins are usually buried deep and then transformed many times in its long evolutional history. These characteristics make it difficult to apply a single method in exploring Pre-Cenozoic Residual Basins. On the other hand, it is highly effective to solve key problems of gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea by using integrated geological and geophysical methods which make full use of the advantages of various exploring techniques. Based on the principle of “the region controls the local; the deep restricts the shallow,” this study focuses on Pre-Cenozoic Residual Basins in Yellow Sea to describe the structure frame of its distribution, with gravity, magnetic, seismic, drill-hole and geological data and previous research findings. In addition, the distribution characteristics of Pre-Cenozoic Residual Basins in Yellow Sea are also analyzed. This paper explores the characteristics of error between gravity forward with constant density and gravity forward with variable density through the study on 2-D and 3-D gravity forward in frequency domain. The result shows that there is a linear relationship between error and depth of 2-D geological model but there is a nonlinear relationship between error and depth of 3-D geological model. The error can be removed according to its linear characteristics or statistical nature of nonlinear characteristics. There is also error between gravity inversion with constant density and gravity inversion with variable density due to variable density and edge-effect. Since there are not noticeable rules between the error and the two causes as variable density and edge-effect, this study adopts gravity inversion with variable density and methods to eliminate the edge-effect in basement inversion to improve inversion accuracy. Based on the study on the rock physical properties and strata distribution of Yellow Sea and adjacent regions, this study finds that there is a big density contrast between Cretaceous-Jurassic strata and their substratum. The magnetic basement of south Yellow Sea is regarded as top of Archeozoic-Proterozoic early strata, and there are double magnetic basements in north Yellow Sea. Gravity and magnetic data are used to inverse the gravity basement and magnetic basement of Yellow Sea, with seismic and drill-hole data as constrains. According to data of gravity and magnetic basement distribution, the depth of Cenozoic strata and previous research findings, this paper calculates the thickness of the Mesozoic and Pre-Mesozoic Residual Basins, draws the distribution outline of Pre-Cenozoic Residual Basins in Yellow Sea, and analyzes its macro-distribution characteristics. Gravity inversion is applied on a typical geological profile in Yellow Sea to analyze the characteristics of its fractures and magnetic basements. The characteristics of Pre-Cenozoic Residual Basins distribution outline in Yellow Sea and the fractures and magnetic basements of its typical profile shown by profile inversion provides new geophysical evidence for these structure views such as “the South Yellow Sea and the North Yellow Sea belong to different structural units” and “Sino-Korea and Yangtze blocks combine along Yellow Sea East Fractured Zone in Yellow Sea”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the principle and method of sequence, the author describes the sequence-filling model of the rifting basin of Xujiaweizi and its gas exploration potential. The object of this paper belongs to the area around Shengping-Wangjiatun anticline. Its srtatigraphy includes Huoshiling Formation (neutral and basic volcanic rocks), Shahezi Formation (coal bedding and mud and some sandstone) and Yingcheng Formation from bottom to top. These stratigraphy units are defined by author as mesosequences respectively. The author emphasizes that the main control factors of sequence change with the types of basin and stage of basin. So the sequence is researched according to the types of basin. This viewpoint is very new, and it is consistent with the principle of sequence. Volcanic action is very frequent and acute, topography difference is obvious. Between the volcanic events, Shahezi Formation is formed, which mainly consists-of sedimentary rocks. Based on the datum from seismic section and drilling core and well-logging, the author analyzes the single unit and unit set and system tract and sedimentary fancies, then, according to the accommodation space change and marking of sequence boundary, Shahezi Formation is divided into two Third-scale sequences. The sedimentary fancies and depth distribution are described. The author also pointed out that the volcanic rocks consume the accommodation space, so volcanic rocks can influence the development of sequence. Based on the concept of accommodation space, the author put volcanic rocks into sequence frame, which normally consists of sedimentary rocks. The topography of volcanic is controlled by lithology of volcanic rocks, the pattern of volcanic eruption and the topography before volcanic eruption. The topography of volcanic can influence sedimentation and the filling pattern of sedimentary rocks. The author describes the composition and lithology fancies and depth distribution of volcanic rocks. The volcanic rocks and Volcanic building, volcanic structure is recognized on seismic section. The author paid a special attention to the relationship between sedimentation and volcanism. Finally, the author analyses the combination of source-reservoir-cover unit in sequence frame. The mudstone of Shahezi Formation has a great depth, the Kerogene in it belongs to type II and III, which tends to produce gas. The Yingcheng Formation lies between Shahezi Formation and Denglouku Formation, belonging to good reservoir. The volcanic rocks of Huoshiling Formation often formed high building, which can capture the gas produced from Shahezi Formation. The stratigraphy of rifting basin of Xujiaweizi has the great potential of gas exploration. This paper claims the following creative points: 1. The author applied the principle and method of sequence to rifting basin, greatly extending its research area and topic issues. 2. The author pointed out that basin of different type and of different stage has a different type of sequence. This is caused by the different main control factors of sequence. 3. Put volcanic rocks into the sequence frame, discussing the probability of regarding the volcanic rocks as the component of sequence, dealing with the relationship between sedimentation and volcanism and its influence to the source-reservoir-cover system. 4. The author pointed out that the filling pattern of rifting basin are determined by the filling pattern of megasequence, whose filling pattern is determined by the filling pattern of system tract and the change of accommodation space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.