923 resultados para Pre-tensioning Structural Design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prokaryotic organisms are one of the most successful forms of life, they are present in all known ecosystems. The deluge diversity of bacteria reflects their ability to colonise every environment. Also, human beings host trillions of microorganisms in their body districts, including skin, mucosae, and gut. This symbiosis is active for all other terrestrial and marine animals, as well as plants. With the term holobiont we refer, with a single word, to the systems including both the host and its symbiotic microbial species. The coevolution of bacteria within their ecological niches reflects the adaptation of both host and guest species, and it is shaped by complex interactions that are pivotal for determining the host state. Nowadays, thanks to the current sequencing technologies, Next Generation Sequencing, we have unprecedented tools for investigating the bacterial life by studying the prokaryotic genome sequences. NGS revolution has been sustained by the advancements in computational performance, in terms of speed, storage capacity, algorithm development and hardware costs decreasing following the Moore’s Law. Bioinformaticians and computational biologists design and implement ad hoc tools able to analyse high-throughput data and extract valuable biological information. Metagenomics requires the integration of life and computational sciences and it is uncovering the deluge diversity of the bacterial world. The present thesis work focuses mainly on the analysis of prokaryotic genomes under different aspects. Being supervised by two groups at the University of Bologna, the Biocomputing group and the group of Microbial Ecology of Health, I investigated three different topics: i) antimicrobial resistance, particularly with respect to missense point mutations involved in the resistant phenotype, ii) bacterial mechanisms involved in xenobiotic degradation via the computational analysis of metagenomic samples, and iii) the variation of the human gut microbiota through ageing, in elderly and longevous individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroinflammation constitutes a major player in the etiopathology of neurodegenerative diseases (NDDs), by orchestrating several neurotoxic pathways which in concert lead to neurodegeneration. A positive feedback loop occurs between inflammation, microglia activation and misfolding processes that, alongside excitotoxicity and oxidative events, represent crucial features of this intricate scenario. The multi-layered nature of NDDs requires a deepen investigation on how these vicious cycles work. This could further help in the search for effective treatments. Electrophiles are critically involved in the modulation of a variety of neuroprotective responses. Thus, we envisioned their peculiar ability to switch on/off biological activities as a powerful tool for investigating the neurotoxic scenario driven by inflammation in NDDs. In particular, in this thesis project, we wanted to dissect at a molecular level the functional role of (pro)electrophilic moieties of previously synthesized thioesters of variously substituted trans-cinnamic acids, to identify crucial features which could interfere with amyloid aggregation as well as modulate Nrf2 and/or NF-κB activation. To this aim, we first synthesized new compounds to identify bioactive cores which could specifically modulate the intended target. Then, we systematically modified their structure to reach additional pathogenic pathways which could in tandem contribute to the inflammatory process. In particular, following the investigation of the mechanistic underpinnings involving the catechol feature in amyloid binding through the synthesis of new dihydroxyl derivatives, we incorporated the identified antiaggregating nucleus into constrained frames which could contrast neuroinflammation also through the modulation of CB2Rs. In parallel, Nrf2 and/or NF-κB antinflammatory structural requirements were combined with the neuroprotective cores of pioglitazone, an antidiabetic drug endowed with MAO-B inhibitory properties, and memantine, which notably contrasts excitotoxicity. By acting as Swiss army knives, the new set of molecules emerge as promising tools to deepen our insights into the complex scenario regulating NDDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La ricerca si focalizza sul rapporto tra tecnologie abilitanti e corpo umano. La miniaturizzazione delle tecnologie, unita alla loro maggiore diffusione negli ambienti, porta ad interrogarsi sull’efficacia dell’integrazione di esse con corpo e attività ad esso connesse. Il contesto problematico della ricerca riguarda i dispositivi indossabili e il progetto di soluzioni destinate a risolvere inediti bisogni o potenziare i sensi umani. La letteratura scientifica e i casi studio circoscrivono il piede come efficace piattaforma per la sperimentazione di interfacce aptiche di comunicazione uomo/macchina, atte a connettere il corpo con informazioni referenziate all’ambiente. Il piede, elemento motorio duplice e simmetrico, ha un’elevata qualità percettiva ed è morfologicamente adeguato all’applicazione di tecnologie emergenti. La posizione di soglia, tra spazio e corpo, consente la raccolta di stimoli da entrambe le aree. La bibliografia evidenzia quanto la pressione, rispetto alla vibrazione, sia preferibile nella comunicazione aptica in quanto componente naturale dei linguaggi relazionali del corpo. Dall’analisi multidisciplinare emerge infine l’opportunità di sviluppo del ritmo come componente strutturale dei messaggi. I legami relazionali tra ritmo, corpo e comportamenti umani sono evidenti in molteplici meccanismi: trascinamento ritmico, mimesi ritmica, sincronia. La messa in relazione di piede, pressione e ritmo diventa affordance dello spazio, capace di suggerire, enfatizzare o attivare determinati comportamenti. L’unione di questi elementi è qui definita ritmica podotattile ed esplicitata nella tesi della descrizione delle sue caratteristiche, dalla circoscrizione di campi e azioni applicative e dalla raccolta dati sui test effettuati con i prototipi costruiti. Le analisi quantitative e qualitative dei dati di lettura del movimento e delle emozioni dimostrano quanto l’utilizzo di un linguaggio ritmico aptico nel piede esprima elevate potenzialità di integrazione con il corpo nel rispetto del comfort e dell’equilibrio attentivo nei flussi di azione preesistenti. I risultati aprono riflessioni su nuove applicazioni progettuali nel campo museale, lavorativo e urbano.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building Information Modelling is changing the design and construction field ever since it entered the market. It took just some time to show its capabilities, it takes some time to be mastered before it could be used expressing all its best features. Since it was conceived to be adopted from the earliest stage of design to get the maximum from the decisional project, it still struggles to adapt to existing buildings. In fact, there is a branch of this methodology that is dedicated to what has been already made that is called Historic BIM or HBIM. This study aims to make clear what are BIM and HBIM, both from a theoretical point of view and in practice, applying from scratch the state of the art to a case study. It had been chosen the fortress of San Felice sul Panaro, a marvellous building with a thousand years of history in its bricks, that suffered violent earthquakes, but it is still standing. By means of this example, it will be shown which are the limits that could be encountered when applying BIM methodology to existing heritage, moreover will be pointed out all the new features that a simple 2D design could not achieve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additive Manufacturing (AM) is nowadays considered an important alternative to traditional manufacturing processes. AM technology shows several advantages in literature as design flexibility, and its use increases in automotive, aerospace and biomedical applications. As a systematic literature review suggests, AM is sometimes coupled with voxelization, mainly for representation and simulation purposes. Voxelization can be defined as a volumetric representation technique based on the model’s discretization with hexahedral elements, as occurs with pixels in the 2D image. Voxels are used to simplify geometric representation, store intricated details of the interior and speed-up geometric and algebraic manipulation. Compared to boundary representation used in common CAD software, voxel’s inherent advantages are magnified in specific applications such as lattice or topologically structures for visualization or simulation purposes. Those structures can only be manufactured with AM employment due to their complex topology. After an accurate review of the existent literature, this project aims to exploit the potential of the voxelization algorithm to develop optimized Design for Additive Manufacturing (DfAM) tools. The final aim is to manipulate and support mechanical simulations of lightweight and optimized structures that should be ready to be manufactured with AM with particular attention to automotive applications. A voxel-based methodology is developed for efficient structural simulation of lattice structures. Moreover, thanks to an optimized smoothing algorithm specific for voxel-based geometries, a topological optimized and voxelized structure can be transformed into a surface triangulated mesh file ready for the AM process. Moreover, a modified panel code is developed for simple CFD simulations using the voxels as a discretization unit to understand the fluid-dynamics performances of industrial components for preliminary aerodynamic performance evaluation. The developed design tools and methodologies perfectly fit the automotive industry’s needs to accelerate and increase the efficiency of the design workflow from the conceptual idea to the final product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of the Airborne project is to develop, at technology readiness level 8 (TRL8), a few selected robotic aerial technologies for quick localization of victims by avalanches by equipping drones with two forefront sensors used in SAR operations in case of avalanches, namely the ARVA and RECCO. This thesis focuses on the design, development, and guidance of the TRL8 quadrotor developed during the project. We present and describe the design method that allowed us to obtain an EMI shielded UAV capable of integrating both RECCO and ARVA sensors. Besides, is presented the avionics and power train design and building procedure in order to obtain a modular UAV frame that can be easily carried by rescuers and achieves all the performance benchmarks of the project. Additionally, in addition to the onboard algorithms, a multivariate regressive convolutional neural network whose goal is the localization of the ARVA signal is presented. On guidance, the automatic flight procedure is described, and the onboard waypoint generator algorithm is presented. The goal of this algorithm is the generation and execution of an automatic grid pattern without the need to know the map in advance and without the support of a control ground station (CGS). Moreover, we present an iterative trajectory planner that does not need pre-knowledge of the map and uses Bézier curves to address optimal, dynamically feasible, safe, and re-plannable trajectories. The goal is to develop a method that allows local and fast replannings in case of an obstacle pop up or if some waypoints change. This makes the novel planner suitable to be applied in SAR operations. The introduction of the final version of the quadrotor is supported by internal flight tests and field tests performed in real operative scenarios by the Club Alpino Italiano (CAI).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RAD52 is a protein involved in various DNA reparation mechanisms. In the last few years, RAD52 has been proposed as a novel pharmacological target for cancer synthetic lethality strategies. Hence, this work has the purpose to investigate RAD52 protein, with biophysical and structural tools to shed light on proteins features and mechanistic details that are, up to now poorly described, and to design novel strategies for its inhibition. My PhD work had two goals: the structural and functional characterization of RAD52 and the identification of novel RAD52 inhibitors. For the first part, RAD52 was characterized both for its DNA interaction and oligomerization state together with its propensity to form high molecular weight superstructures. Moreover, using EM and Cryo-EM techniques, additional RAD52 structural hallmarks were obtained, valuable both for understanding protein mechanism of action and for drug discovery purpose. The second part of my PhD project focused on the design and characterization of novel RAD52 inhibitors to be potentially used in combination therapies with PARPi to achieve cancer cells synthetic lethality, avoiding resistance occurrence and side effects. With this aim we selected and characterized promising RAD52 inhibitors through three different approaches: 19F NMR fragment-based screening; virtual screening campaign; aptamers computational design. Selected hits (fragments, molecules and aptamers) were investigated for their binding to RAD52 and for their mechanism of inhibition. Collected data highlighted the identification of hits worthy to be developed into more potent and selective RAD52 inhibitors. Finally, a side project carried out during my PhD is reported. GSK-3β protein, an already validated pharmacological target was investigated using biophysical and structural biology tools. Here, an innovative and adaptable drug discovery screening pipeline able to directly identify selective compounds with binding affinities not higher than a reference binder was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-lactam compounds represent an important class of four-membered cyclic amides (azetidin-2-ones) thanks to their valuable and varied biological activities. The presence of a β-lactam ring in a series of bioactive molecules targeting different proteins, allows us to consider the azetidin-2-one a privileged structure. The constrained four-membered cyclic amide could easily undergo ring-opening reactions by nucleophilic residues in the active sites of enzymes and this is the mechanism suggested for antibacterial activity; moreover, the rigid core structure could favour and actually enhance directional noncovalent bonding for an effective ligand−receptor recognition. Nowadays monocyclic β-lactams are known as anticancer, antidiabetic, anti-tubercular, anti-inflammatory agents and as ligands of integrin receptors. In order to consider different facets of 4-azetidin-2-ones, this theis will be divided into two sections: the first one will be dedicated to the design, synthesis and characterization of biological active β-lactams (new β-lactam based integrin ligands and their different applications and novel N-thio-alkyl substituted azetidinones for the treatment of Tuberculosis); the second one instead, will be based on two projects which consider two different proprieties of β-lactams: stereochemistry, evaluated by biocatalytic methods and reactivity at C-4 position. In the first case we want to obtain enantiomerically pure 4-acetoxy-2-azetidinone, useful for synthesis of stereo-chemically defined bioactive β-lactams, while in the second case we want to study in which conditions the nucleophilic substitutions occur. A final section will be instead dedicated to the research project conducted in Philochem AG, Zurich, under the supervision of Prof. Dario Neri and Dr. Samuele Cazzamalli, based on the study of new cleavable disulfide linkers for small molecule drug conjugates targeting Fibroblast activation protein (FAP).