926 resultados para Polymeric Scaffolds
Resumo:
This work describes three C8-stationary phases for high performance liquid chromatography based on silica metallized with ZrO2, TiO2 or Al2O3 layers, having poly(methyloctylsiloxane) immobilized onto their surfaces. The stationary phases were characterized using XRF, XAS, FTIR, SEM and elemental analysis to determine the physical characteristics of the oxide and polysiloxane layers formed on the surfaces and chromatographically to evaluate the separation parameters. The results show the changes on the silica surface and allowed proposing a structure for the oxide layer, being observed tetrahedral and octahedral structures, what is completely new in the literature. The formation of a homogeneous layer of metallic oxide (TiO2 and ZrO2) was observed on the silica. The C8-titanized and C8-aluminized stationary phases presented good chromatographic performances, with good values of asymmetry and efficiency. All stationary phase presented few loss of the polymeric layer after the HPLC, indicating that this layer is well attached on the metalized support.
Resumo:
The aim of this work was to develop and validate an analytical method for the quantification of tioconazole in polymeric nanocapsule suspensions by high performance liquid chromatography with UV detection. The analysis was performed with a mobile phase composed of methanol:water (80:20) and 0.18% ammonium hydroxide; RP-18 column and UV detection at 219 nm. The method proved to be linear in the concentration range of 5-50 µg mL-1 (r = 0.9999), specific, precise (repeatability RSD = 1.42%, intermediate precision RSD = 1.17%), accurate (98 - 102%) and robust (RSD < 2.0%). In conclusion, a simple and rapid method was validated proving suitable for quantification of tioconazole in polymeric nanocapsules.
Resumo:
This review reports the preparation and characterization of bionanocomposites based on biodegradable polymers reinforced with cellulose nanocrystals (CNC) described in the literature. The outstanding potential of cellulose nanocrystals as reinforcement fillers of biodegradable polymers is presented with an emphasis on the solution casting process, which is an appropriate method to investigate the physico-chemical effects of the incorporation of CNC into the polymeric matrices. Besides solution casting, other small scale methods such as electrospinning and layer-by-layer are also covered.
Resumo:
C18 chemically bonded sorbents have been the main materials used in solid phase extraction (SPE). However, due their high hydrophobicity some hydrophobic solutes are strongly retained leading to the consumption of larger quantities of organic solvent for efficient recoveries. This work presents a sorbent with lower hydrophobicity but similar selectivity to the C18 sorbent, prepared by thermal immobilization of poly(dimethylsiloxane-co-alkylmethylsiloxane) (PDAS) on silica. PDAS has organic chains with methyl groups alternating with octadecyl or hexadecyl groups in its monomeric unities. For the Si(PDAS) sorbent presented, the polymeric layer was physically adsorbed on the silica surface with 12% carbon load. Although the coating of silica with the polymeric layer was incomplete, the PDAS provided better protection for the silica surface groups, promoting mostly hydrophobic interactions between analytes and the sorbent. Sorption isotherm studies revealed that the retention of hydrophobic solutes on Si(PDAS) was less intense than on conventional sorbents, confirming the lower hydrophobicity of the lab-made sorbent. Additional advantages of Si(PDAS) include simplicity and low cost of preparation, making this material a potential sorbent for the analysis of highly hydrophobic solutes.
Resumo:
A novel superabsorbent hydrogel (SH) composite based on a poly(acrylamide-co-acrylate) matrix filled with nontronite (NONT), a Fe(III)-rich member of the smectite group of clay minerals, is described in this manuscript. A variety of techniques, including FTIR, XRD, TGA, and SEM/EDX, were utilized to characterize this original composite. Experimental data confirmed the SH composite formation and suggested NONT was completely dispersed in the polymeric matrix. Additionally, NONT improved the water uptake capacity of the final material, which exhibited fast absorption, low sensitivity to the presence of salt, high water retention and a pH sensitive properties. These preliminary data showed that the original SH composite prepared here possesses highly attractive properties for applications in areas such as the agriculture field, particularly as a soil conditioner.
Resumo:
The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.
Resumo:
Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.
Resumo:
In this study, a novel hybrid composite based on biodegradable hydrogel and Portland cement with promising technological properties was reported. In the first step, a full 23 with central point factorial design was utilized to obtain the enhanced polyacrylamide-carboxymethylcellulose hydrogel compositions. A mathematical model was devised, indicating that the 3 main variables were significant and the AAm and MBAAm variables positively contributed to the mode and showing that the CMC variable had the opposite contribution. In the second step, these compositions were mixed with Portland cement to obtain the hybrid composites. The presence of cement improved the mechanical properties of polymeric matrices, and electronic microscopic micrographics revealed that the hydrogels were well adhered to the cement phase and no phase separation between hydrogel and cement was detected. Finally, using the energy dispersive X-ray technique, the elements Na, Mg, Al, Si, S, K, Ca and Fe were detected in the polymeric matrix, consistent with the hybrid composite formation.
Resumo:
Photoacoustic spectroscopy provides information about both amplitude and phase of the response of a system to an optical excitation process. This paper presents the studies of the phase in the electron transfer process between octaethylporphyn (OEP) and quinone molecules dispersed in a polymeric matrix. It was observed a tendency in the phase behavior to small values only in the spectral region near to 620 nm, while for shorter wavelength did not show any tendency. These measurements suggested that the electron transfer to acceptor occurred with the participation of octaethylporphyn singlet excited state.
Resumo:
Antibodies are natural binding proteins produced in vertebrates as a response to invading pathogens and foreign substances. Because of their capability for tight and specific binding, antibodies have found use as binding reagents in research and diagnostics. Properties of cloned recombinant antibodies can be further improved by means of in vitro evolution, combining mutagenesis with subsequent phage display selection. It is also possible to isolate entirely new antibodies from vast naïve or synthetic antibody libraries by phage display. In this study, library techniques and phage display selection were applied in order to optimise binding scaffolds and antigen recognition of antibodies, and to evolve new and improved bioaffinity reagents. Antibody libraries were generated by random and targeted mutagenesis. Expression and stability were mainly optimised by the random methods whereas targeted randomisation of the binding site residues was used for optimising the binding properties. Trinucleotide mutagenesis allowed design of defined randomisation patterns for a synthetic antibody library. Improved clones were selected by phage display. Capture by a specific anti- DHPS antibody was exploited in the selection of improved phage display of DHPS. Efficient selection for stability was established by combining phage display selection with denaturation under reducing conditions. Broad-specific binding of a generic anti-sulfonamide antibody was improved by selection with one of the weakest binding sulfonamides. In addition, p9 based phage display was studied in affinity selection from the synthetic library. A TIM barrel protein DHPS was engineered for efficient phage display by combining cysteinereplacement with random mutagenesis. The resulting clone allows use of phage display in further engineering of DHPS and possibly use as an alternative-binding scaffold. An anti-TSH scFv fragment, cloned from a monoclonal antibody, was engineered for improved stability to better suite an immunoassay. The improved scFv tolerates 8 – 9 °C higher temperature than the parental scFv and should have sufficient stability to be used in an immunoanalyser with incubation at 36 °C. The anti-TSH scFv fragment was compared with the corresponding Fab fragment and the parental monoclonal antibody as a capturing reagent in a rapid 5-min immunoassay for TSH. The scFv fragment provided some benefits over the conventionally used Mab in anayte-binding capacity and assay kinetics. However, the recombinant Fab fragment, which had similar kinetics to the scFv, provided a more sensitive and reliable assay than the scFv. Another cloned scFv fragment was engineered in order to improve broad-specific recognition of sulfonamides. The improved antibody detects different sulfonamides at concentrations below the maximum residue limit (100 μg/kg in EU and USA) and allows simultaneous screening of different sulfonamide drug residues. Finally, a synthetic antibody library was constructed and new antibodies were generated and affinity matured entirely in vitro. These results illuminate the possibilities of phage display and antibody engineering for generation and optimisation of binding reagents in vitro and indicate the potential of recombinant antibodies as affinity reagents in immunoassays.
Resumo:
In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.