952 resultados para Polymeric


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effects of polymeric components on the physical state of chlorhexidine within bioadhesive, semisolid formulations using Raman spectroscopy. Semisolid formulations were prepared in which chlorhexidine base (CHX, 5%w/w, particle size

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medical device related infections are becoming an increasing prevalent area of infectious disease. They can be attributed to a multitude of factors from an increasing elderly population with reduced immunological status to increasing microbial resistance and evolution. Of greatest significance is the failure of standard antimicrobial regimens to eradicate biomaterial-related infections due to the formation of microbial biofilms consisting of extracellular polymeric substances. Biofilms form and thrive at the abiotic device surface where nutrients are more concentrated and symbiotic colonies can be formed. The formation of a biofilm matrix occurs in a series of steps beginning with reversible attachment of bacteria to the surface of the substrate and terminating in dispersion of mature biofilm microcolonies that aim to colonise fresh surfaces high in nutrients. Mature biofilms can resist 10-1000 times the concentrations of standard antibiotic regimens that are required to kill genetically equivalent planktonic forms. The extent of the infection and the pathogen(s) present can be attributed to both the form and location of the device. It is important that preventative measures and treatment strategies relate to combating the causative microorganisms. Preventative measures include: the use of anti-infective biomaterials that can be coated or incorporated with standard or innovative antimicrobials; modified anti-adhesive medical devices; environmental sterilisation protocols and prophylactic drug therapy. Treatment of established infection may require removal of the device or if deemed possible the device may be salvageable through the initiation of antimicrobial therapy. The increasing spectre of antibiotic resistance and medical device related infections are a large and increasing burden on health care systems and the patient’s quality of life and long term prognosis. As an infectious disease it represents one of the most difficult challenges facing modern science and healthcare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ruthenium red, a di-mu-oxo-bridged ruthenium complex, and its oxidised form, ruthenium brown, have been studied as possible homogeneous redox catalysts for the oxidation of water to O2 by Ce(IV) ions in H2SO4 and HCIO4. In both media the Ce(IV) ions oxidised the ruthenium red to brown and, with excess of Ce(IV), decomposed the ruthenium brown irreversibly to product(s) with three weak absorption bands at 390, 523 and 593 nm. Only in HCIO4 did the decomposition product(s) appear to act as a stable O2 catalyst. Spectral evidence tentatively suggests that the active catalyst may be a hydrolysed Ru(IV) polymeric species. The rate of catalysis was proportional to the initial concentration of ruthenium red/brown and the activation energy was determined as 36 +/- 1 kJ mol-1 over the temperature range ambient to ca. 50-degrees-C. At temperatures greater than 50-degrees-C the O2 catalyst undergoes an irreversible thermal decomposition reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the physicochemical properties and preliminary in vivo clinical performance of formulations containing hydroxyethylcellulose (HEC; 3, 5, 10% w/w, poly(vinylpyrrolidone) (PVP; 3, 5% w/w), polycarbophil (PC; 1, 3, 5% w/w), and flurbiprofen (5% w/w) were examined. Flurbiprofen release into PBS pH 7.4 was performed at 37 degrees C. The mechanical properties (hardness, compressibility, adhesiveness, initial stress) and syringeability of formulations were determined using a texture analyzer in texture profile analysis (TPA) and compression modes, respectively. In general, the time required for release of 10 and 30% of the original mass of flurbiprofen (t(10%), t(30%)) increased as the concentration of each polymeric component increased. However, in the presence of either 5 or 10% HEC and 5% PC, increased PVP concentration decreased both t(10%), t(30%) due to excessive swelling land disintegration) of these formulations. Increased concentrations of HEC, PVP, and PC significantly increased formulation hardness, compressibility, work of syringe expression, and initial stress due to the effects of these polymers on formulation viscoelasticity. Similarly, increased concentrations of PC (primarily), HEC, and PVP increased formulation adhesiveness-due to the known bioadhesive properties of these polymers. Clinical efficacies of formulations containing 3% HEC, 3% PVP, 3% PC, and either 0% (control) of 5% (test) flurbiprofen, selected to offer optimal drug release and mechanical properties, were evaluated and clinically compared in an experimental gingivitis model. The test (flurbiprofen-containing) formulation significantly reduced gingival inflammation, as evaluated using the gingival index, and the gingival crevicular fluid volume, whereas, these clinical parameters were generally increased in volunteers who had received the control formulation. There were no observed differences in the plaque indices of the two subject groups, confirming that the observed differences in gingival inflammation could not be accredited to differences in plaque accummulation. This study has shown both the applicability of the in vitro methods used, particularly TPA, for the rational selection of formulations for clinical evaluation and, additionally, the clinical benefits of the topical application of a bioadhesive semisolid flurbiprofen-containing formulation for the treatment of experimental gingivitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel mucoadhesive formulations containing hydroxyethylcellulose (HEC; 3 and 5%, w/w) or Carbopol (3 and 5%, w/w), polycarbophil (PC; 1 and 3%, w/w) and metronidazole (5%, w/w) at pH 6.8 were designed for the treatment of periodontal diseases. Each formulation was characterised in terms of hardness, compressibility, adhesiveness and cohesiveness (using Texture Profile Analysis), drug release, adhesion to a mucin disc (measured as a detachment force using the texture analyser in tensile mode) and, finally, syringeability (using the texture analyser in compression mode). Drug release from all formulations was non-diffusion controlled. Drug release was significantly decreased as the concentration of each polymeric component was increased, due to both the concomitant increased viscosity of the formulations and, additionally, the swelling kinetics of PC following contact with dissolution fluid. Increasing the concentrations of each polymeric component significantly increased formulation hardness, compressibility, adhesiveness, mucoadhesion and syringeability, yet decreased cohesiveness. Increased product hardness, compressibility and syringeability were due to polymeric effects on formulation viscosity. The effects on cohesiveness may be explained both by increased viscosity and also by the increasing semi-solid nature of products containing 5% HEC or Carbopol and PC (1 or 3%). The observations concerning formulation adhesiveness/mucoadhesion illustrate the adhesive nature of each polymeric component. Greatest adhesion was noted in formulations where neutralisation of PC was maximally suppressed. For the most part, increased time of contact between formulation and mucin significantly increased the required force of detachment, due to the greater extent of mucin polymer hydration and interpenetration with the formulations. Significant statistical interactions were observed between the effects of each polymer on drug release and mechanical/mucoadhesive properties. These interactions may be explained by formulatory effects on the extent of swelling of PC. In conclusion, the formulations described offered a wide range of mechanical and drug release characteristics. Formulations containing HEC exhibited superior physical characteristics for improved drug delivery to the periodontal pocket and are now the subject of long-term clinical investigations. (C) 1997 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the process variables, pH of aqueous phase, rate of addition of organic, polymeric, drug-containing phase to aqueous phase, organic:aqueous phase volume ratio and aqueous phase temperature on the entrapment of propranolol hydrochloride in ethylcellulose (N4) microspheres prepared by the solvent evaporation method were examined using a factorial design. The observed range of drug entrapment was 1.43 +/- 0.02%w/w (pH 6, 25 degrees C, phase volume ratio 1:10, fast rate of addition) to 16.63 +/- 0.92%w/w (pH 9, 33 degrees C, phase volume ratio 1:10, slow rate of addition) which corresponded to mean entrapment efficiencies of 2.86 and 33.26, respectively. Increased pH, increased temperature and decreased rate of addition significantly enhanced entrapment efficiency. However, organic:aqueous phase volume ratio did not significantly affect drug entrapment. Statistical interactions were observed between pH and rate of addition, pH and temperature, and temperature and rate of addition. The observed interactions involving pH are suggested to be due to the abilities of increased temperature and slow rate of addition to sufficiently enhance the solubility of dichloromethane in the aqueous phase, which at pH 9, but not pH 6, allows partial polymer precipitation prior to drug partitioning into the aqueous phase. The interaction between temperature and rate of addition is due to the relative lack of effect of increased temperature on drug entrapment following slow rate of addition of the organic phase. In comparison to the effects of pH on drug entrapment, the contributions of the other physical factors examined were limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A linear cation-decorated polymeric support with tuneable surface properties and microstructure has been prepared by ring-opening metathesis polymerisation (ROMP) of a pyrrolidinium-functionalised norbornene-based monomer with cyclooctene. The derived peroxophosphotungstate-based polymer-immobilised ionic liquid phase (PIILP) catalyst is an efficient and recyclable system for the epoxidation of allylic alcohols and alkenes, with only a minor reduction in performance on successive cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To formulate therapeutic proteins into polymeric devices the protein is typically in the solid state, which can be achieved by the process of freeze-drying. However, freeze-drying not only risks denaturing the protein but it can adversely affect the cure characteristics of protein-loaded silicone elastomers. This study demonstrates that a variation in the parameters of the freeze-dryer can significantly affect the residual moisture content of freeze-dried BSA, which in turn has an effect on the bulk density and flow properties of the BSA. The bulk density and flow properties of the BSA subsequently affect the cure characteristics of BSA-loaded silicone elastomers. An increase in the residual moisture content results in the freeze-dried BSA having a decreased bulk density and poor flow properties which can have a detrimental effect on the cure characteristics of a freeze-dried BSA-loaded silicone elastomer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolving polymeric microneedle arrays formulated to contain recombinant CN54 HIVgp140 and the TLR4 agonist adjuvant MPLA were assessed for their ability to elicit antigen-specific immunity. Using this novel microneedle system we successfully primed antigen-specific responses that were further boosted by an intranasal mucosal inoculation to elicit significant antigen-specific immunity. This prime-boost modality generated similar serum and mucosal gp140-specific IgG levels to the adjuvanted and systemic subcutaneous inoculations. While the microneedle primed groups demonstrated a balanced Th1/Th2 profile, strong Th2 polarization was observed in the subcutaneous inoculation group, likely due to the high level of IL-5 secretion from cells in this group. Significantly, the animals that received a microneedle prime and intranasal boost regimen elicited a high level IgA response in both the serum and mucosa, which was greatly enhanced over the subcutaneous group. The splenocytes from this inoculation group secreted moderate levels of IL-5 and IL-10 as well as high amounts of IL-2, cytokines known to act in synergy to induce IgA. This work opens up the possibility for microneedle-based HIV vaccination strategies that, once fully developed, will greatly reduce risk for vaccinators and patients, with those in the developing world set to benefit most.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study highlights the potential associated with utilising multi-component polymeric gels to formulate materials that possess unique rheological and mechanical properties. The synergistic effect* and interaction between hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC), polymers which are commonly employed as drug delivery platforms for implantable medical devices (1), have been determined using dynamic, continuous shear and texture profile analysis. * The difference between the actual response of a binary mixture and the sum of the two components comprising the mixture Increases in polymer concentration resulted in an increase in G', G? and ?' whereas tan d decreased. Similarly, significant increases were also apparent in continuous shear and texture analysis. All binary mixtures showed positive synergy values which may suggest associative interaction between the two components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter ? was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter ? was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (?G mix) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram