974 resultados para Polymer-solutions
Resumo:
Herein we report a low-threshold organic laser device based on semiconducting poly(9, 9′ -dioctylfluoren-2,7-diyl-alt-benzothiadiazole) (F8BT) encapsulated in a mechanically stretchable polydimethylsiloxane (PDMS) matrix. We take advantage of the natural flexibility of PDMS to alter the periodicity of the distributed feedback grating which in turn tunes the gain wavelength at which the resonant feedback is obtained. This way, we demonstrate that low-threshold lasing [6.1 μJ cm-2 (5.3 nJ)] is maintained over a large stretching range of 0%-7% which translates into a tuning range of about 20 nm. © 2010 American Institute of Physics.
Resumo:
In this paper, the rigid particle filled polymer is studied in the hope to understand the real damage mechanisms. Two damage parameters were introduced and measured. One is the macro-damage of the materials calculated from the modulus measured, another is micro-damage describing the interfacial debonding or the percentage of the particle debonded from the matrix. The damage rate of the macro damage decreases, while the micro damage increases with the applied stress.
Resumo:
Multi-finger, normally-closed microgrippers made from a bilayer of a metal and diamond-like carbon (DLC) or a trilayer of a polymer, metal and DLC have been analysed, simulated and fabricated. Temperatures of ∼700 K are necessary to open Ni/DLC bimorph structures. Microgrippers made from an SU8/DLC bilayer or SU8/Al/DLC trilayer have also been fabricated, and fully closed microcages with diameters of ∑40 μm have been obtained. Using SU8 reduces the opening temperature of these devices to only ∼400 K.
Resumo:
The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.
Resumo:
We report on rheological properties of a dispersion of multiwalled carbon nanotubes in a viscous polymer matrix. Particular attention is paid to the process of nanotubes mixing and dispersion, which we monitor by the rheological signature of the composite. The response of the composite as a function of the dispersion mixing time and conditions indicates that a critical mixing time t* needs to be exceeded to achieve satisfactory dispersion of aggregates, this time being a function of nanotube concentration and the mixing shear stress. At shorter times of shear mixing t< t*, we find a number of nonequilibrium features characteristic of colloidal glass and jamming of clusters. A thoroughly dispersed nanocomposite, at t> t*, has several universal rheological features; at nanotube concentration above a characteristic value nc ∼2-3 wt. % the effective elastic gel network is formed, while the low-concentration composite remains a viscous liquid. We use this rheological approach to determine the effects of aging and reaggregation. © 2006 The American Physical Society.
Resumo:
Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Advances in functionality and reliability of nanocomposite materials require careful formulation of processing methods to ultimately realize the desired properties. An extensive study of how the variation in fabrication process would affect the mechanism of conductivity and thus the final electrical properties of the carbon nanotube-polymer composite is presented. Some of the most widely implemented procedures are addressed, such as ultrasonication, melt shear mixing, and addition of surfactants. It is hoped that this study could provide a systematic guide to selecting and designing the downstream processing of carbon nanocomposites. Finally, this guide is used to demonstrate the fabrication and performance of a stretchable (pliable) conductor that can reversibly undergo uniaxial strain of over 100%, and other key applications are discussed. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The T-stress is considered as an important parameter in linear elastic fracture mechanics. In this paper, several closed form solutions of T-stress in plane elasticity crack problems in an infinite plate are investigated using the complex potential theory. In the line crack case, if the applied loading is the remote stress or the concentrated forces, the T-stress can be derived from the basic field. Here, the basic field is defined as the field caused by the applied loading in the infinite plate without the crack. For the circular are crack, the T-stress can be abstracted from a known solution. For the cusp crack problems, the T-stress can be separated from the obtained stress solution for which the conformal mapping technique is used.
Resumo:
By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.
Resumo:
For understanding the correctness of simulations the behaviour of numerical solutions is analysed, Tn order to improve the accuracy of solutions three methods are presented. The method with GVC (group velocity control) is used to simulate coherent structures in compressible mixing layers. The effect of initial conditions for the mixing layer with convective Mach number 0.8 on coherent structures is discussed. For the given initial conditions two types of coherent structures in the mixing layer are obtained.
Resumo:
We have fabricated a series of polymer stabilized chiral nematic test cells for use as flexoelectro-optic devices. The devices fabricated were based on commercial chiral nematic mixtures which were polymer stabilized so as to enhance the uniformity and stability of the uniform lying helix texture in the cells. During fabrication and test procedures a series of unusual scattering states have been observed within the devices at different viewing angles. The observations made so far indicate that the properties of the scattering state lies somewhere between the focal conic texture and the Grandjean or planar texture and that the devices exhibit both a helical pitch selective reflection and scattering effect. What is even more dramatic is that the wavelength selectivity of the scattering effect can be tuned by an applied field. In addition, we show that it is possible to achieve good uniform lying helix textures from such devices. Moreover, we show that in certain cases the spontaneous alignment of the helix in the plane of the device opens up the possibility of a new mode of switching. Flexoelectric, Redshift, Coloured scattering, Liquid crystal, Polymer-stabilized liquid-crystal;.