984 resultados para Polyharmonic distortion modeling. X-parameters. Test-Bench. Planar structures. PHD
Resumo:
Percarboxylic acids are commonly used as disinfection and bleaching agents in textile, paper, and fine chemical industries. All of these applications are based on the oxidative potential of these compounds. In spite of high interest in these chemicals, they are unstable and explosive chemicals, which increase the risk of synthesis processes and transportation. Therefore, the safety criteria in the production process should be considered. Microreactors represent a technology that efficiently utilizes safety advantages resulting from small scale. Therefore, microreactor technology was used in the synthesis of peracetic acid and performic acid. These percarboxylic acids were produced at different temperatures, residence times and catalyst i.e. sulfuric acid concentrations. Both synthesis reactions seemed to be rather fast because with performic acid equilibrium was reached in 4 min at 313 K and with peracetic acid in 10 min at 343 K. In addition, the experimental results were used to study the kinetics of the formation of performic acid and peracetic acid. The advantages of the microreactors in this study were the efficient temperature control even in very exothermic reaction and good mixing due to the short diffusion distances. Therefore, reaction rates were determined with high accuracy. Three different models were considered in order to estimate the kinetic parameters such as reaction rate constants and activation energies. From these three models, the laminar flow model with radial velocity distribution gave most precise parameters. However, sulfuric acid creates many drawbacks in this synthesis process. Therefore, a ´´greener´´ way to use heterogeneous catalyst in the synthesis of performic acid in microreactor was studied. The cation exchange resin, Dowex 50 Wx8, presented very high activity and a long life time in this reaction. In the presence of this catalyst, the equilibrium was reached in 120 second at 313 K which indicates a rather fast reaction. In addition, the safety advantages of microreactors were investigated in this study. Four different conventional methods were used. Production of peracetic acid was used as a test case, and the safety of one conventional batch process was compared with an on-site continuous microprocess. It was found that the conventional methods for the analysis of process safety might not be reliable and adequate for radically novel technology, such as microreactors. This is understandable because the conventional methods are partly based on experience, which is very limited in connection with totally novel technology. Therefore, one checklist-based method was developed to study the safety of intensified and novel processes at the early stage of process development. The checklist was formulated using the concept of layers of protection for a chemical process. The traditional and three intensified processes of hydrogen peroxide synthesis were selected as test cases. With these real cases, it was shown that several positive and negative effects on safety can be detected in process intensification. The general claim that safety is always improved by process intensification was questioned.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
The aim of this study was to develop a an automated bench top electronic penetrometer (ABEP) that allows performing tests with high rate of data acquisition (up to 19,600 Hz) and with variation of the displacement velocity and of the base area of cone penetration. The mechanical components of the ABEP are: a supporting structure, stepper motor, velocity reducer, double nut ball screw and six penetration probes. The electronic components of ABEP are: a "driver" to control rotation and displacement, power supply, three load cells, two software programs for running and storing data, and a data acquisition module. This penetrometer presented in compact size, portable and in 32 validation tests it proved easy to operate, and showed high resolution, high velocity in reliability in data collection. During the validation tests the equipment met the objectives, because the test results showed that the ABEP could use different sizes of cones, allowed work at different velocities, showed for velocity and displacement, were only 1.3% and 0.7%, respectively, at the highest velocity (30 mm s-1) and 1% and 0.9%, respectively for the lowest velocity (0.1 mm s-1).
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
This study aimed to apply mathematical models to the growth of Nile tilapia (Oreochromis niloticus) reared in net cages in the lower São Francisco basin and choose the model(s) that best represents the conditions of rearing for the region. Nonlinear models of Brody, Bertalanffy, Logistic, Gompertz, and Richards were tested. The models were adjusted to the series of weight for age according to the methods of Gauss, Newton, Gradiente and Marquardt. It was used the procedure "NLIN" of the System SAS® (2003) to obtain estimates of the parameters from the available data. The best adjustment of the data were performed by the Bertalanffy, Gompertz and Logistic models which are equivalent to explain the growth of the animals up to 270 days of rearing. From the commercial point of view, it is recommended that commercialization of tilapia from at least 600 g, which is estimated in the Bertalanffy, Gompertz and Logistic models for creating over 183, 181 and 184 days, and up to 1 Kg of mass , it is suggested the suspension of the rearing up to 244, 244 and 243 days, respectively.
Resumo:
Based on experimental tests, it was obtained the equations for drying, equilibrium moisture content, latent heat of vaporization of water contained in the product and the equation of specific heat of cassava starch pellets, essential parameters for realizing modeling and mathematical simulation of mechanical drying of cassava starch for a new technique proposed, consisting of preformed by pelleting and subsequent artificial drying of starch pellets. Drying tests were conducted in an experimental chamber by varying the air temperature, relative humidity, air velocity and product load. The specific heat of starch was determined by differential scanning calorimetry. The generated equations were validated through regression analysis, finding an appropriate correlation of the data, which indicates that by using these equations, can accurately model and simulate the drying process of cassava starch pellets.
Resumo:
Planar, large area, position sensitive silicon detectors are widely utilized in high energy physics research and in medical, computed tomography (CT). This thesis describes author's research work relating to development of such detector components. The key motivation and objective for the research work has been the development of novel, position sensitive detectors improving the performance of the instruments they are intended for. Silicon strip detectors are the key components of barrel-shaped tracking instruments which are typically the innermost structures of high energy physics experimental stations. Particle colliders such as the former LEP collider or present LHC produce particle collisions and the silicon strip detector based trackers locate the trajectories of particles emanating from such collisions. Medical CT has become a regular part of everyday medical care in all developed countries. CT scanning enables x-ray imaging of all parts of the human body with an outstanding structural resolution and contrast. Brain, chest and abdomen slice images with a resolution of 0.5 mm are possible and latest CT machines are able to image whole human heart between heart beats. The two application areas are presented shortly and the radiation detection properties of planar silicon detectors are discussed. Fabrication methods and preamplifier electronics of the planar detectors are presented. Designs of the developed, large area silicon detectors are presented and measurement results of the key operating parameters are discussed. Static and dynamic performance of the developed silicon strip detectors are shown to be very satisfactory for experimental physics applications. Results relating to the developed, novel CT detector chips are found to be very promising for further development and all key performance goals are met.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
kuv., 8 x 15 cm
Resumo:
kuv., 10 x 15 cm
Resumo:
kuv., 10 x 15 cm
Resumo:
kuv., 8 x 15 cm
Resumo:
kuv., 10 x 15 cm
Resumo:
kuv., 10 x 15 cm
Resumo:
O "California Mastitis Test" (CMT) estima o conteúdo de células somáticas no leite e é interpretado subjetivamente, estabelecendo-se escores que, na maioria dos casos, variam de 1 a 5. O escore 1 indica uma reação completamente negativa e os de 2-5 indicam graus crescentes de resposta inflamatória do úbere, sendo normalmente considerados como indicativos de mastite subclínica. Dependendo da interpretação dos escores, o CMT pode produzir resultados falso-positivos ou falso-negativos. Esse trabalho teve o objetivo de avaliar a sensibilidade e a especificidade do CMT em relação à contagem de células somáticas (CCS). Foram utilizadas 3.012 amostras de leite provenientes de 760 vacas Holandesas ou mestiças Holandês-Zebu, pertencentes a 15 rebanhos. Todas as amostras foram submetidas ao CMT e processadas para CCS em equipamento Fossomatic 90. Os valores médios de CCS (x 1.000 células/ml) obtidos para os escores de CMT foram 1 (79,9), 2 (333,5), 3 (670,3), 4 (1.354,0) e 5 (4.455,6). Três opções de interpretação (doente/não-doente) para o CMT foram testadas, em relação aos valores de CCS, iniciando com 100.000 células/ml: (a) 1 versus 2, 3, 4, e 5; (b) 1 e 2 versus 3, 4 e 5; (c) 1, 2, 3 versus 4 e 5. As sensibilidades do CMT em identificar corretamente quartos mamários acima de 200.000 células/ml foram 79%, 61% e 34%, para as opções a, b e c, respectivamente. Para identificar corretamente contagens acima de 500.000 células/ml, as sensibilidades do CMT, para as opções a, b e c, foram, respectivamente: 93%, 82% e 54%. A sensibilidade do CMT em identificar quartos mamários com mastite subclínica foi adequada (acima de 80%) quando a interpretação do teste foi mais rigorosa (opções a e b). A interpretação da reação 3 como negativa (opção c) só alcançou sensibilidade de 80% para contagens entre 1.200.000 e 1.400.000 células/ml. As especificidades do CMT, para CCS de 200.000 e 500.000 foram, respectivamente, 90% e 80% (opção a), 97% e 90% (opção b) e 99% e 97% (opção c).