952 resultados para Platinum electrode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nitric oxide biosensor based on cytochrome c (an heme protein) covalently immobilized to poly(5-amino-1-naphthol) by using cyanuric chloride as a bridge was developed. The immobilization was studied by cyclic voltammetry and quartz crystal microbalance. The nitric oxide detection as a function of poly(5-amino-1-naphthol) amount was recorded, and the best result was obtained with the electrode prepared by 70 cycles. The sensitivity and detection limit were 0.015 mu A cm(-2)/mu mol L(-1) and 2.85 mu mol L(-1), respectively. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the surface-enhanced Raman scattering (SERS) spectra of pyridine (py) on thin films of Co and Ni electrodeposited on an Ag electrode activated by oxidation-reduction cycles (ORC) are presented. The SERS spectra from the thin films were compared to those of py on activated bare transition metal electrodes. It was verified that the SERS spectra of py on 3 monolayers (ML)-thick films of Ni and Co presented only bands assignable to the py adsorbed on transition metal surfaces. It was also observed that even for 50 ML-thick transition metal films, the py SERS intensity was ca. 40% of the intensity from the 3 ML-thick films. The relative intensities of the SERS bands depended on the thickness of the films, and for films thicker than 7 ML for Co and 9 ML for Ni they were very similar to those of the bare transition metal electrodes. The transition metal thin films over Ag activated electrodes presented SERS intensities 3 orders of magnitude higher than the ones from bare transition metal electrodes. These films are more suitable to study the adsorption of low Raman cross-section molecules than are ORC-activated transition metal electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensor for H2O2 amperometric detection based on a Prussian blue (PB) analogue was developed. The electrocatalytic process allows the determination of hydrogen peroxide at 0.0 V with a limit of detection of 1.3 mu mol L-1 in a flow injection analysis (FIA) configuration. Studies on the optimization of the FIA parameters were performed and under optimal FIA operational conditions the linear response of the method was extended up to 500 mu mol L-1 hydrogen peroxide with good stability. The possibility of using the developed sensor in medium containing sodium ions and the increased operational stability constitute advantages in comparison with PB-based amperometric sensors. The usefulness of the methodology was demonstrated by addition-recovery experiments with rainwater samples and values were in the 98.8 to 103% range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cachaca) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L-1 (Pb2+), 8.00-100.0 X 10(-7) mol L-1 (Cu2+) and 2.00-10.0 x 10(-6) mol L-1 (Hg2+). Detection limits of 4.0 x 10(-8) mol L-1 (Pb2+), 2.0 x 10(-7) mol L-1 (Cu2+) and 4.0 x 10(-7) mol L-1 (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anodic oxidation of ascorbic acid on a ruthenium oxide hexacyanoferrate modified electrode was characterized by cyclic voltammetry. On this modified surface, the electrocatalytic process allows the determination of ascorbic acid to be performed at 0.0 V and pH 6.9 with a limit of detection of 2.2 mu M in a flow injection configuration. Under this experimental condition, no interference from glucose, nitrite and uric acid was noticed. Lower detection limit values were obtained by measuring flow injection analysis (FIA) responses at 0.4 V (0.14 mu M), but a concurrent loss of selectivity is expected at this more positive potential. Under optimal FIA operating conditions, the linear response of the method was extended up to 1 mM ascorbic acid. The repeatability of the method for injections of a 1.0 mM ascorbic acid solution was 2.0% (n=10). The usefulness of the method was demonstrated by an addition-recovery experiment with urine samples and the recovered values were in the 98-104% range. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical decolourisation of Reactive Orange 16 was carried out in an electrochemical flow-cell, using as working electrodes a Pt thin film deposited on a Ti substrate (Pt/Ti) prepared by the Pechini method and a pure platinum (Pt) foil. Using the Pt/Ti electrodes better results for dye decolourisation were obtained under milder conditions than those used for pure Pt. For the Pt electrode, colour removal of 93 % (lambda = 493 nm) was obtained after 60 min, at 2.2 V vs. RHE, using 0.017 mol L(-1) NaCl + 0.5 mol L(-1) H(2)SO(4) solution. For the Pt/Ti electrode there was better colour removal, 98%, than for the Pt electrode. Moreover, we used 0.017 mol L(-1) NaCl solution and the applied potential was 1.8 V. Under this condition after 15 min of electrolysis, more than 80% of colour was removed. The rate reaction constant, assuming a first order reaction, was 0.024 min(-1) and 0.069 min(-1), for Pt and Pt/Ti electrodes, respectively.