927 resultados para Plasminogen-activator
Resumo:
In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^
Resumo:
Neutrophils are an essential component of innate immunity, serving to provide an immediate response to microbial invasion. In response to emergency situations such as an infection, serum levels of granulocyte colony-stimulating factor (G-CSF) are induced, causing a boost in neutrophil production and a rapid mobilization of bone marrow neutrophils to the blood, where they can circulate to clear foreign pathogens. Signal transducer and activator of transcription 3 (STAT3) is a principal downstream signaling intermediate of the G-CSF receptor. Mice null for STAT3 are embryonic lethal; therefore, to examine the role that STAT3 has in granulocytic development and function in vivo, we utilized a conditional knockout mouse that deletes functional STAT3 in the hematopoietic system (referred to herein as STAT3-deficient). Using this model, we show that STAT3 is required for G-CSF-induced expansion of granulocytic progenitor cells within the bone marrow and for acute G-CSF-dependent neutrophil mobilization into the blood. Thus, STAT3 has a critical role in the immediate G-CSF-response in vivo. Sustained G-CSF exposure causes skewed granulocytic production and mobilization in STAT3-deficient mice, suggesting an atypical granulocytic developmental pathway. To determine if STAT3-deficient neutrophils were functional, we examined neutrophil chemotaxis, since neutrophil function relies on proper chemoattractant-induced migration to infected tissue sites. STAT3-deficient neutrophils have impaired chemotaxis in response to the potent neutrophil chemoattractants MIP-2 and KC, both ligands for the chemokine receptor CXCR2. Additionally, STAT3-deficient mice have a defect in NIIP-2-induced acute neutrophil mobilization in vivo. Chemotaxis in response to fMLP and SDF-1, which utilize distinct seven-transmembrane chemokine receptors, was similar between wild type and STAT3-deficient neutrophils, suggesting that STAT3 specifically regulates CXCR2-mediated migration. MIP-2-induced activation of the Raf/MEK/ERK signaling cascade, which we show is required for MIP-2-dependent neutrophil chemotaxis, was impaired in STAT3-deficient neutrophils. Interestingly, acute G-CSF administration induced CXCR2 expression and Raf/MEK/ERK activation in neutrophils from wild type mice, whereas these responses were abrogated in neutrophils from STAT3-deficient mice. Thus, STAT3 regulation of CXCR2 functions may also contribute to STAT3's control of the acute G-CSF mobilization response. These combined results place STAT3 as a critical intermediate in neutrophil migration and G-CSF-induced neutrophil production responses required for emergency granulopoiesis. ^
Resumo:
Brain metastasis, which occurs in 40%-60% of patients with advanced melanoma, has led directly to death in the majority of cases. Unfortunately, little is known about the biological and molecular basis of melanoma brain metastases. In our previous study, we developed a model to study human melanoma brain metastasis and found that Stat3 activity was increased in human brain metastatic melanoma cells when compared with that in cutaneous melanoma cells. The increased activation of Stat3 is also responsible for affecting melanoma angiogenesis in vivo and melanoma cell invasion in vitro and significantly affecting the expression of bFGF, VEGF, and MMP-2 in vivo and in vitro. Interestingly, a member of a new family of cytokine-inducible inhibitors of signal transduction, termed suppressors of cytokine signaling 1 (SOCS1) was found to negatively regulate the Janus kinase signal transducer and activator of transcription (Jak/STAT) signaling cascade. Here we report that restoration of SOCS1 expression by transfecting of SOCS1-expressing vector effectively inhibited melanoma brain metastasis through inhibiting Stat3 activation and further affecting melanoma angiogenesis and melanoma cell invasion in vitro, and significantly affected the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in vitro and in vivo. In addition, we used cDNA array to compare mRNA expression in the SOCS1-transfected and vector-transfected cell lines and found some genes are tightly correlated to the restoration of SOCS1. One of them is Caveolin-1 (Cav-1). Cav-1 was reported to function as a tumor suppressor gene by several groups. Finally, the Cav-1 expression is up-regulated in SOCS1-overexpressing cell line. Further study found the regulation of Cav-1 by SOCS1 occurs through inhibiting Stat3 activation. Activated Stat3 binds directly to Cav-1 promoter and the Cav-1 promoter within -575bp is essential for active Stat3 binding. My studies reveal that Stat3 activation and SOCS1 expression play important roles in melanoma metastases. Moreover, the expression between SOCS1, Stat3 and Cav-1 forms a feedback regulation loop. ^
Resumo:
The Jun activation domain-binding protein (JAB1) is a c-Jun co-activator and a member of the COP9 signalosome. Additionally, it has recently been named a key negative regulator of the cyclin-dependent kinase inhibitor, p27. JAB1 overexpression has been observed in breast cancer and correlates with low p27 levels as well as poor prognosis, yet the mechanism of JAB1 deregulation is unknown. Data from our laboratory suggest that constitutive transcriptional activation of the jab1 gene is responsible for JAB1 protein overexpression. Therefore, we hypothesized that overexpression of JAB1 in breast cancer can be attributed to increased transcriptional activity. To identify potential positive regulators of JAB1, we characterized the promoter and found a 128 bp region that was critical for jab1 transcriptional activation. Our studies show that two oncogenic transcription factors, C/EBPβ and STAT3, play an important role in modulating jab1 transcription. Further, we have identified jab1 as a direct target gene of the SRC/STAT3 pathway. These studies provide insight to the mechanism of JAB1 overexpression in breast cancer and open up possibilities for therapies to inhibit its expression. ^ The development of the humanized monoclonal antibody, Herceptin (trastuzumab) targeting the HER2 (ErbB2) receptor has provided promising treatment to patients with aggressive HER2 positive breast cancer. However, many patients are resistant to Herceptin and additional therapies are needed to overcome resistance. Recent findings indicate that one mechanism of resistance involves AKT phosphorylation and subsequent mislocalization of the cyclin dependent kinase inhibitor, p27. We examined whether JAB1 facilitated degradation of p27 may be another mechanism of resistance to Herceptin. Our studies show that overexpression of JAB1 inhibited Herceptin induced G1-arrest and p27 accumulation. Interestingly, increased JAB1 levels were observed in two BT-474 Herceptin resistant clones. Targeted silencing of JAB1 increased p27 protein levels, reinstated a G1 checkpoint, and reduced cellular proliferation in the resistant clones. Our studies have demonstrated that inhibition of JAB1 sensitizes Herceptin resistant cells to treatment. Therefore, inhibition of JAB1 could provide a novel method of sensitizing resistant tumors to Herceptin-induced tumor growth arrest. ^
Resumo:
Proper immune system function is dependent on positive and negative regulation of T cell signaling pathways. Full T cell activation requires sequential signaling through the T cell receptor (TCR), costimulatory molecules and the IL-2 receptor (IL-2R). The IL-2R associated Janus tyrosine kinase 3 (Jak3), as well as Signal transducer and activator of transcription 5 (Stat5), are required for normal T cell function and survival. Constitutive activation of Jak3 and Stat5 have been linked to cancers of hematopoietic origin, including certain lymphomas and leukemias. ^ The production of cAMP by adenylate cyclase has been shown to negatively regulate human TCR mediated cell proliferation. Since cAMP has been shown to negatively regulate T cell activation, we sought to investigate whether crosstalk exists between cAMP and IL-2R signaling. The first objective of this study was to determine the effect of cAMP on the activation of IL-2R signaling molecules Jak3 and Stat5. We found that the potent adenylate cyclase activator, forskolin, inhibited IL-2 activation of Jak3 and Stat5. Indeed, in vitro kinase assays and electrophoretic mobility shift assays verified a loss of Jak3 enzymatic activity and Stat5 DNA binding ability, respectively. Further analysis of IL-2R signaling showed that forskolin treatment reduced IL-2 induced association of the IL-2Rβ and γc chain. ^ Because cAMP activates protein kinase A (PKA), the second objective was to determine the role for PKA in the cAMP directed regulation of IL-2R signaling intermediates. Interestingly, forskolin induced serine phosphorylation of Jak3, suggesting that cAMP can directly regulate Jak3 via activation of a serine/threonine kinase. Indeed, phosphoamino acid analysis revealed that PKA was able to induce Jak3 serine phosphorylation in the human leukemia cell line MT-2. In addition, in vitro kinase assays established that PKA can directly inhibit Jak3 enzymatic activity. Collectively, these data indicate that cAMP negatively regulates IL-2R signaling via various effector molecules by a previously unrecognized mechanism. This new data suggests that the Jak3/Stat5 pathway may be regulated by various pharmacological agents that stimulate cAMP production and thus can be used to uncouple some types of T cell mediated diseases. ^
Resumo:
In this dissertation, I identify two molecular mechanisms by which transcription factors cooperate with their co-regulators to mediate gene regulation. In the first part, I demonstrate that p53 directly recruits LSD1, a histone demethylase, to AFP chromatin to demethylate methylated H3K4 and actively mediate transcription repression. Loss of p53 and LSD1 interaction at chromatin leads to derepression of AFP in hepatic cells. In the second part, I reveal that Trim24 functions as an important co-activator in ERα-mediated gene activation in response to estrogen stimulation. Trim24 is recruited by ligand-bound ERα to chromatin and stabilizes ERα-chromatin interactions by binding to histone H3 via its PHD finger, which preferentially recognizes unmethylated H3K4. ^
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
Glioblastoma multiforme (GBM) is an aggressive, high grade brain tumor. Microarray studies have shown a subset of GBMs with a mesenchymal gene signature. This subset is associated with poor clinical outcome and resistance to treatment. To establish the molecular drivers of this mesenchymal transition, we correlated transcription factor expression to the mesenchymal signature and identified transcriptional co-activator with PDZ-binding motif (TAZ) to be highly associated with the mesenchymal shift. High TAZ expression correlated with worse clinical outcome and higher grade. These data led to the hypothesis that TAZ is critical to the mesenchymal transition and aggressive clinical behavior seen in GBM. We investigated the expression of TAZ, its binding partner TEAD, and the mesenchymal marker FN1 in human gliomas. Western analyses demonstrated increased expression of TAZ, TEAD4, and FN1 in GBM relative to lower grade gliomas. We also identified CpG islands in the TAZ promoter that are methylated in most lower grade gliomas, but not in GBMs. TAZ-methylated glioma stem cell (GSC) lines treated with a demethylation agent showed an increase in mRNA and protein TAZ expression; therefore, methylation may be another novel way TAZ is regulated since TAZ is epigenetically silenced in tumors with a better clinical outcome. To further characterize the role of TAZ in gliomagenesis, we stably silenced or over-expressed TAZ in GSCs. Silencing of TAZ decreased invasion, self-renewal, mesenchymal protein expression, and tumor-initiating capacity. Over-expression of TAZ led to an increase in invasion, mesenchymal protein expression, mesenchymal differentiation, and tumor-initiating ability. These actions are dependent on TAZ interacting with TEAD since all these effects were abrogated with TAZ could not bind to TEAD. We also show that TAZ and TEAD directly bind to mesenchymal gene promoters. Thus, TAZ-TEAD interaction is critically important in the mesenchymal shift and in the aggressive clinical behavior of GBM. We identified TAZ as a regulator of the mesenchymal transition in gliomas. TAZ could be used as a biomarker to both estimate prognosis and stratify patients into clinically relevant subgroups. Since mesenchymal transition is correlated to tumor aggressiveness, strategies to target and inhibit TAZ-TEAD and the downstream gene targets may be warranted in alternative treatment.
Resumo:
The prevalence of obesity has continued to rise over the last several decades in the United States lending to overall increases in risk for chronic diseases including many types of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor types. Previous data has demonstrated differential signaling through Akt and mTOR via the IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In an effort to better understand the importance of mTORC1 in the context of both positive and negative energy balance during epithelial carcinogenesis, we have employed the use of specific pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) to target mTORC1 or various components of this pathway during skin tumor promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition via rapamycin, metformin or combination treatments greatly inhibited skin tumor development in normal, overweight and obese mice. Furthermore, mechanisms by which these chemopreventive agents may be exerting their anti-tumor effects were explored. In addition, the effect of these compounds on the epidermal proliferative response was analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent manner. Both compounds also blocked or attenuated TPA-induced signaling through epidermal mTORC1 as well as several downstream targets. In addition, inhibition of this pathway by metformin appeared to be, at least in part, dependent on AMPK activation in the skin. Overall, the data indicate that pharmacological strategies targeting this pathway offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They suggest that mTORC1 contributes significantly to the process of skin tumor promotion, specifically during dietary energy balance effects. Exploiting the mechanistic information underlying dietary energy balance responsive pathways will help translate decades of research into effective strategies for prevention of epithelial carcinogenesis.
Resumo:
Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.
Resumo:
Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.
Resumo:
In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.