941 resultados para Plasma enhanced chemical vapour depositions (PECVD)
Resumo:
In this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chem¬istry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.
Resumo:
Explosive ocean island volcanism in the Greenland-Iceland-Norwegian Sea (GIN Sea) is indicated by marine tephra layers at 10-300 ka. Peaks of explosive volcanism occurred in oxygen isotope stages 8, 7, 5 and 1. The depositional age of the tephra was estimated using the oxygen isotope stratigraphy and dating of marine records. Geochemical analyses of the tephra layers show that all originate from Iceland. Here we report the characteristics of tephra from these major Icelandic events in 30 deep-sea cores from the GIN Sea. Our findings provide constraints on the distribution of tephra from the eruption source. For the Vedde Ash (oxygen isotope stage 1) we estimate a minimum fallout area of 2*10**5 km**2, stretching from central Greenland in the west and southern Sweden in the east, to 71°N in the GIN Sea. The magnitude of the eruption and the regional wind conditions controlled the extent and concentrations of these ash fallout events. Oceanic circulation and differential settling may have affected the distribution and final deposition of ash particles such as bubble wall shards.
Resumo:
Processes of authigenic manganese ore formation in sediments of the North Equatorial Pacific are considered on the basis of a study of the surface layer (<2 mm) of a ferromanganese nodule and four micronodule size fractions from associated surface sediment (0-7 cm). Inhomogeneity of nodule composition is shown. Mn/Fe ratio is maximal in samples from lateral sectors of the nodule at the water-sediment interface. Compositional differences of nodules are related to preferential accumulation of trace elements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenic component trapped during nodule growth (Ga, Rb, Ba, and Cs). Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by minimal Mn/Fe values. A compositional comparison of manganese micronodules and surface layers of the nodule demonstrates that micronodule material was subjected to more intense reworking during diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe, but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are the least mobile elements during diagenesis. Differences in chemical composition of the micronodules and nodules are related not only to additional input of Mn in the process of diagenesis, but also to transformation of iron oxyhydroxides after removal of Mn from the close association with Fe formed in suspended matter during sedimentation.
Resumo:
Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species.
Resumo:
The role of sediment diagenesis in the marine cycles of Li and B is poorly understood. Because Li and B are easily mobilized during burial and are consumed in authigenic clay mineral formation, their abundance in marine pore waters varies considerably. Exchange with the overlying ocean through diffusive fluxes should thus be common. Nevertheless, only a minor Li sink associated with the low-temperature alteration of volcanic ash has been observed. We describe a low-temperature diagenetic environment in the Black Sea dominated by the alteration of detrital plagioclase feldspars. Fluids expelled from the Odessa mud volcano in the Sorokin Trough originate from shallow (~100-400 m deep) sediments which are poor in volcanic materials but rich in anorthite. These fluids are depleted in Na+, K+, Li+, B, and 18O and enriched in Ca2+ and Sr2+, indicating that anorthite is dissolving and authigenic clays are forming. Using a simple chemical model, we calculate the pH and the partial pressure of CO2 (PCO2) in fluids associated with this alteration process. Our results show that the pH of these fluids is up to 1.5 pH units lower than in most deep marine sediments and that PCO2 levels are up to several hundred times higher than in the atmosphere. These conditions are similar to those which favor the weathering of silicate minerals in subaerial soil environments. We propose that in Black Sea sediments enhanced organic matter preservation favors CO2 production through methanogenesis and results in a low pore water pH, compared to most deep sea sediments. As a result, silicate mineral weathering, which is a sluggish process in most marine diagenetic environments, proceeds rapidly in Black Sea sediments. There is a potential for organic matter-rich continental shelf environments to host this type of diagenesis. Should such environments be widespread, this new Li and B sink could help balance the marine Li and Li isotope budgets but would imply an apparent imbalance in the B cycle.
Resumo:
Phosphate deposits which apparently formed during the Miocene climatic optimum are widespread on the Chatham Rise and Camp bell Plateau, and on seamounts in the north Tasman Sea. They formed under oxidising conditions by the phosphatisation of older or contemporaneous foraminiferal oozes (Campbell Plateau and Chatham Rise) and coral limestones (Tasman Sea). The phosphorites of the rise and plateau were formed where current activity was sufficiently strong to prevent normal sedimentation, and now form lag deposits. After the Miocene, phosphorite formation ceased and was followed by manganese oxide deposition where conditions were highly oxidising on the eastern Campbell Plateau and north Tasman seamounts, and by glauconite formation in the much less oxidising environments of the western Campbell Plateau and the Chat ham Rise. The manganese deposits are not volcanogenic, as was formerly thought, but formed by slow precipitation from well oxygenated sea water.
Resumo:
Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.
Resumo:
A set of seized "legal high'' samples and pure novel psychoactive substances have been examined by surface-enhanced Raman spectroscopy using polymer-stabilized Ag nanoparticle (Poly-SERS) films. The films both quenched fluorescence in bulk samples and allowed identification of mu g quantities of drugs collected with wet swabs from contaminated surfaces.
Resumo:
Highly swellable polymer films doped with Ag nanoparticle aggregates (poly-SERS films) have been used to record very high signal:noise ratio, reproducible surface-enhanced (resonance) Raman (SER(R)S) spectra of in situ dried ink lines and their constituent dyes using both 633 and 785 nm excitation. These allowed the chemical origins of differences in the SERRS spectra of different inks to be determined. Initial investigation of pure samples of the 10 most common blue dyes showed that the dyes which had very similar chemical structures such as Patent Blue V and Patent Blue VF (which differ only by a single OH group) gave SERRS spectra in which the only indications that the dye structure had been changed were small differences in peak positions or relative intensities of the bands. SERRS studies of 13 gel pen inks were consistent with this observation. In some cases inks from different types of pens could be distinguished even though they were dominated by a single dye such as Victoria Blue B (Zebra Surari) or Victoria Blue BO (Pilot Acroball) because their predominant dye did not appear in other inks. Conversely, identical spectra were also recorded from different types of pens (Pilot G7, Zebra Z-grip) because they all had the same dominant Brilliant Blue G dye. Finally, some of the inks contained mixtures of dyes which could be separated by TLC and removed from the plate before being analysed with the same poly-SERS films. For example, the Pentel EnerGel ink pen was found to give TLC spots corresponding to Erioglaucine and Brilliant Blue G. Overall, this study has shown that the spectral differences between different inks which are based on chemically similar, but nonetheless distinct dyes, are extremely small, so very close matches between SERRS spectra are required for confident identification. Poly-SERS substrates can routinely provide the very stringent reproducibility and sensitivity levels required. This, coupled with the awareness of the reasons underlying the observed differences between similarly coloured inks allows a more confident assessment of the evidential value of inks SERS and should underpin adoption of this approach as a routine method for the forensic examination of inks.