927 resultados para Plant virus transmission
Resumo:
Nucleopolyhedrovirus (NPV) has become an integral part of integrated pest management (IPM) in many Australian agricultural and horticultural crops. This is the culmination of years of work conducted by researchers at the Queensland Department of Primary Industries and Fisheries (QDPI&F) and Ag Biotech Australia Pty Ltd. In the early 1970’s researchers at QDPI&F identified and isolated a virus in Helicoverpa armigera populations in the field. This NPV was extensively studied and shown to be highly specific to Helicoverpa and Heliothis species. Further work showed that when used appropriately the virus could be used effectively to manage these insects in crops such as sorghum, cotton, chickpea and sweet corn. A similar virus was first commercially produced in the USA in the 1970’s. This product, Elcar®, was introduced into Australia in the late 1970’s by Shell Chemicals with limited success. A major factor contributing to the poor adoption of Elcar was the concurrent enormous success of the synthetic pyrethroids. The importance of integrated pest management was probably also not widely accepted at that time. Gradual development of insect resistance to synthetic pyrethroids and other synthetic insecticides in Australia and the increased awareness of the importance of IPM meant that researchers once again turned their attentions to environmentally friendly pest management tools such NPV and beneficial insects. In the 1990’s a company called Rhone-Poulenc registered an NPV for use in Australian sorghum, chickpea and cotton. This product, Gemstar®, was imported from the USA. In 2000 Ag Biotech Australia established an in-vivo production facility in Australia to produce commercial volumes of a product similar to the imported product. This product was branded, ViVUS®, and was first registered and sold commercially in Australia in 2003. The initial production of ViVUS used a virus identical to the American product but replicating it in an Australian Helicoverpa species, H. armigera. Subsequent research collaboration between QDPI&F and Ag Biotech reinvigorated interest in the local virus strain. This was purified and the production system adapted to produce it on a commercial scale. This new version of ViVUS, which was branded ViVUS Gold®, was first registered and sold commercially in 2004. Widespread insect resistance to insecticides and a greater understanding of integrated pest management is leading to increased adoption of technologies such NPV in Australian agriculture.
Resumo:
Plant food materials have a very high demand in the consumer market and therefore, improved food products and efficient processing techniques are concurrently being researched in food engineering. In this context, numerical modelling and simulation techniques have a very high potential to reveal fundamentals of the underlying mechanisms involved. However, numerical modelling of plant food materials during drying becomes quite challenging, mainly due to the complexity of the multiphase microstructure of the material, which undergoes excessive deformations during drying. In this regard, conventional grid-based modelling techniques have limited applicability due to their inflexible grid-based fundamental limitations. As a result, meshfree methods have recently been developed which offer a more adaptable approach to problem domains of this nature, due to their fundamental grid-free advantages. In this work, a recently developed meshfree based two-dimensional plant tissue model is used for a comparative study of microscale morphological changes of several food materials during drying. The model involves Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) to represent fluid and solid phases of the cellular structure. Simulation are conducted on apple, potato, carrot and grape tissues and the results are qualitatively and quantitatively compared and related with experimental findings obtained from the literature. The study revealed that cellular deformations are highly sensitive to cell dimensions, cell wall physical and mechanical properties, middle lamella properties and turgor pressure. In particular, the meshfree model is well capable of simulating critically dried tissues at lower moisture content and turgor pressure, which lead to cell wall wrinkling. The findings further highlighted the potential applicability of the meshfree approach to model large deformations of the plant tissue microstructure during drying, providing a distinct advantage over the state of the art grid-based approaches.
Resumo:
This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.
Resumo:
Barmah Forest virus (BFV) disease is an emerging mosquito-borne disease in Australia. We aimed to outline some recent methods in using GIS for the analysis of BFV disease in Queensland, Australia. A large database of geocoded BFV cases has been established in conjunction with population data. The database has been used in recently published studies conducted by the authors to determine spatio-temporal BFV disease hotspots and spatial patterns using spatial autocorrelation and semi-variogram analysis in conjunction with the development of interpolated BFV disease standardised incidence maps. This paper briefly outlines spatial analysis methodologies using GIS tools used in those studies. This paper summarises methods and results from previous studies by the authors, and presents a GIS methodology to be used in future spatial analytical studies in attempt to enhance the understanding of BFV disease in Queensland. The methodology developed is useful in improving the analysis of BFV disease data and will enhance the understanding of the BFV disease distribution in Queensland, Australia.
Resumo:
Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox™), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24× sample enrichment required to induce a 50% response in the Microtox™ assay to 84×, from 30× sample enrichment to induce a 50% reduction in photosynthetic yield to 125×, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.
Resumo:
The high priority of monitoring workers exposed to nitrobenzene is a consequence of clear findings of experimental carcinogenicity of nitrobenzene and the associated evaluations by the International Agency for Research on Cancer. Eighty male employees of a nitrobenzene reduction plant, with potential skin contact with nitrobenzene and aniline, participated in a current medical surveillance programme. Blood samples were routinely taken and analysed for aniline, 4-aminodiphenyl (4-ADP) and benzidine adducts of haemoglobin (Hb) and human serum albumin (HSA). Also, levels of methaemoglobin (Met-Hb) and of carbon monoxide haemoglobin (CO-Hb) were monitored. Effects of smoking were straightforward. Using the rank sum test of Wilcoxon, we found that very clear-cut and statistically significant smoking effects (about 3-fold increases) were apparent on CO-Hb (P = 0.00085) and on the Hb adduct of 4-ADP (P = 0.0006). The mean aniline-Hb adduct level in smokers was 1.5 times higher than in non-smokers; the significance (P = 0.05375) was close to the 5% level. The strongest correlation was evident between the Hb and HSA adducts of aniline (rs = 0.846). Less pronounced correlations (but with P values < 0.02) appeared between aniline-Hb and 4-ADP-Hb adducts (rs = 0.388), between 4-ADP and 4-ADP-HSA adducts (rs = 0.373), and between 4-ADP-Hb and aniline-HSA adducts (rs = 0.275). In view of the proposal for additional use of the aniline-HSA adduct for biological monitoring, particularly in cases of acute overexposures or poisonings, the strong correlation of the Hb and HSA conjugates is noteworthy; the ratio aniline-HSA:aniline-Hb was 1:42 for the entire cohort.