957 resultados para Phase Transition
Resumo:
New classes of martensitic stainless steels, with low carbon levels, have been developed aiming to meet the needs of the petroleum industry segment. However, their use has been restricted due to the fact it is a recent development and many of its properties are still under investigation. This work determines the values of initial and final temperatures for the austenitic transformation and the initial and final temperatures of martensitic formation for alloy 13Cr2Ni0,1C, by means of dilatometric tests under continuous cooling. Based on these results the optimized conditions for quench and temper heat treatments were obtained. The microstructural characterization of the alloys under coarse fusion condition was carried out by optical microscopy and the presence of delta-ferrite in the martensitic matrix was observed.
Resumo:
The dielectric properties of the 0.65[Pb(Mg 1/3Nb 2/3)O 3]-0.35PbTiO 3 ferroelectric ceramic composition were investigated viewing the capability to be used for tunable microwave applications. The dielectric response has been studied for three selected temperatures (300 K, 370 K and 400 K), below the paraelectric- ferroelectric phase transition temperature, as a function of the applied 'bias' electric field. The obtained dielectric tunability was found to be around 60 %, under an electric field of 19 kV/cm, which makes the studied ceramic composition an excellent candidate for application in the electro-electronic industry, as tunable devices. © 2010 IEEE.
Resumo:
Dielectric spectroscopy was used in this study to examine polycrystalline vanadium and tungstendoped BaZr 0.1Ti 0.90O 3 (BZT10:2V and BZT10:2W) ceramics obtained by the mixed oxide method. According to X-ray diffraction analyses, addition of vanadium and tungsten lead to ceramics free of secondary phases. SEM analyses reveal that both dopants result in slower oxygen ion motion and consequently lower grain growth rate. Temperature dependence dielectric study showed normal ferroelectric to paraelectric transition well above the room temperature for the BZT10 and BZT10:2V ceramics. However, BZT10:2W ceramic showed a relaxor-like behavior near phase transition characterized by the empirical parameter γ. Piezoelectric force microscopy images reveals that the piezoelectric coefficient is strongly influenced by type of donor dopant suggesting promising applications for dynamic random access memories and data-storage media. Copyright © 2010 American Scientific Publishers All rights reserved.
Resumo:
Objective: To describe two successful cases of utilizing refrozen blastocysts by vitrification derived from supernumerary embryos. Design: Case report. Setting: Private fertility clinic. Subjects: Two infertility couple. Interventions: Refrozen blastocysts by vitrification derived from supernumerary embryos. Main outcome measures: Obstetric and pediatric results. Results: Two pregnancies obtained from refrozen-warmed blastocysts led to two healthy babies being born without clinical or genetic problems. Conclusion: These case reports support the notion of safely repeating cryopreservation. However, despite these favorable results, there is still a need for prospective controlled studies on the obstetric and neonatal repercussions of refreezing and of vitrification in particular. © 2010 Middle East Fertility Society.
Resumo:
Measurements of the coefficient of thermal expansion on the spin-liquid candidate κ-(BEDT-TTF) 2Cu 2(CN) 3 have revealed distinct and strongly anisotropic lattice effects around 6 K - a possible spin liquid instability. In order to study the effects of a magnetic field on the low-temperature spin-liquid state, dilatometric measurements have been conducted both as a function of temperature at B = const. and as a function of field at T = const. While the 6 K anomaly is found to be insensitive to magnetic fields B ≤ 10 T, the maximum field applied, surprisingly strong B -induced effects are observed for magnetic fields applied along the in-plane b-axis. Above a threshold field of 0.5 T < B c ≤ 1 T, a jump-like anomaly is observed in the b-axis lattice parameter. This anomaly, which is located at 8.7 K at B = 1 T, grows in size and shifts to lower temperatures with increasing the magnetic field. Although the anomaly bears resemblance to a first-order phase transition, the lack of hysteresis suggests otherwise. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a ℤ3 Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first order deconfinement phase transition are discussed. © 2013 American Institute of Physics.
Resumo:
A recently proposed scenario for baryogenesis, called post-sphaleron baryogenesis (PSB), is discussed within a class of quark-lepton unified framework based on the gauge symmetry SU(2)L×SU(2) R×SU(4)c realized in the multi-TeV scale. The baryon asymmetry of the Universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon-number-violating ΔB=2 process of neutron-antineutron (n-n̄) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars, imply an upper limit on the n-n̄ oscillation time of 5×1010 sec regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, τn-n̄ is predicted to be less than 1010 sec, which is accessible to the next generation of proposed experiments. © 2013 American Physical Society.
Resumo:
The influence of current density, at the interval 5-100 mA cm-2, on the structural and magnetic properties of electrodeposited (Co 100-xNix)100-yWy alloys (x = 23-33.5 at. % Ni, y = 1.7-7.3 at. % W) was studied from a glycine-containing bath. W-content decreases with the increase of the current density magnitude. X-ray data have shown stabilization of hexagonal close packed, face centered cubic or a mixture of these structures by modulating the applied cathodic current density, for values lower than 50 mA cm-2. Two structural phase transitions were observed: one from hexagonal close packed to face centered cubic structural transition occurring for a current density of 20 mA cm -2, and another one, from cubic crystalline phase to amorphous state, which happens for values higher than 50 mA cm-2. These structural phase transitions seem to be associated with the W-content as well as average crystalline grain sizes that reduce with increasing the current density value. The grain size effect may explain the face centered cubic stabilization in Co-rich CoNiW alloys, which was initially assumed to be basically due to H-adsorption/incorporation. Magnetic properties of Co-rich CoNiW alloys are strongly modified by the current density value; as a result of the changes on the W-content and their structural properties© 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)