943 resultados para Pharmaceutical Drug
Resumo:
A side-effect of treatment with antipsychotic drugs for schizophrenia is increased body fat, which leads to further morbidity and poor adherence to treatment. The 5-hydroxytryptamine 2C receptor (5-HT2C) has been associated with this effect; we aimed to establish whether a genetic polymorphism of the promoter region of this receptor affects weight gain after drug treatment in first-episode patients with schizophrenia. We noted significantly less weight gain in patients with the -759T variant allele (p=0.0003) than in those without this allele, who were more likely to have substantial (>7%) weight gain (p=0.002). We have identified a genetic factor that is associated with antipsychotic drug-induced weight gain.
Resumo:
This study describes the formulation, characterisation and preliminary clinical evaluation of mucoadhesive, semi-solid formulations containing hydroxyethylcellulose (HEC, 1-5%, w/w), polyvinylpyrrolidine (PVP, 2 or 3%, w/w), poly carbophil (PC, 1 or 3%, w/w) and tetracycline (5%, w/w, as the hydrochloride). Each formulation was characterised in terms of drug release, hardness, compressibility, adhesiveness (using a texture analyser in texture profile analysis mode), syringeability (using a texture analyser in compression mode) and adhesion to a mucin disc (measured as a detachment force using the texture analyser in tensile mode). The release exponent for the formulations ranged from 0.78+/-0.02 to 1.27+/-0.07, indicating that drug release was non-diffusion controlled. Increasing the concentrations of each polymeric component significantly increased the time required for 10 and 30% release of the original mass of tetracycline, due to both increased viscosity and, additionally, the unique swelling properties of the formulations. Increasing concentrations of each polymeric component also increased the hardness, compressibility, adhesiveness, syringeability and mucoadhesion of the formulations. The effects on product hardness, compressibility and syringeability may be due to increased product viscosity and, hence, increased resistance to compression. Similarly, the effects of these polymers on adhesiveness/mucoadhesion highlight their mucoadhesive nature and, importantly, the effects of polymer state (particularly PC) on these properties. Thus, in formulations where the neutralisation of PC was maximally suppressed, adhesiveness and mucoadhesion were also maximal. Interestingly, statistical interactions were primarily observed between the effects of HEC and PC on drug release, mechanical and mucoadhesive properties. These were explained by the effects of HEC on the physical state of PC, namely swollen or unswollen. In the preliminary clinical evaluation, a formulation was selected that offered an appropriate balance of the above physical properties and contained 3% HEC, 3% PVP and 1% PC, in addition to tetracycline 5% (as the hydrochloride). The clinical efficacy of this (test) formulation was compared to an identical tetracycline-devoid (control) formulation in nine periodontal pockets (greater than or equal to 5 mm depth). One week following administration of the test formulation, there was a significant improvement in periodontal health as identified by reduced numbers of sub-gingival microbial pathogens. Therefore, it can be concluded that, when used in combination with mechanical plaque removal, the tetracycline-containing semi-solid systems described in this study would augment such therapy by enhancing the removal of pathogens, thus improving periodontal health. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The use of blood spot collection cards is a simple way to obtain specimens for analysis of drugs for the purpose of therapeutic drug monitoring, assessing adherence to medications and preventing toxicity in routine clinical setting. We describe the development and validation of a microanalytical technique for the determination of metformin from dried blood spots. The method is based on reversed phase high-performance liquid chromatography with ultraviolet detection. Drug recovery in the developed method was found to be more than 84%. The limits of detection and quantification were calculated to be to be 90 and 150 ng/ml, respectively. The intraday and interday precision (measured by CV%) was always less than 9%. The accuracy (measured by relative error, %) was always less than 12%. Stability analysis showed that metformin is stable for at least 2 months when stored at -70 degrees C. The small volume of blood required (10 mu L), combined with the simplicity of the analytical technique makes this a useful procedure for monitoring metformin concentrations in routine clinical settings. The method is currently being applied to the analysis of blood spots taken from diabetic patients to assess adherence to medications and relationship between metformin level and metabolic control of diabetes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.