998 resultados para Persecution against Christians
Resumo:
The in vivo antifungal activity of the naphthoquinone beta-lapachone against disseminated infection by Cryptococcus neoformans was investigated. Swiss mice were immunosuppressed daily with dexamethasone (0.5 mg per mouse) intraperitoneally for 3 days, the procedure was repeated 4 days later, and the animals were then challenged intravenously with C. neoformans (10(6) CFU/mL) 1 week later. Seven days after infection, the mice were divided into groups and treated daily with beta-lapachone (10 mg/kg, iv) for 7 (N = 6) and 14 days (N = 10). Amphotericin B (0.5 mg/kg) was used as comparator drug and an additional group received PBS. Treatment with beta-lapachone cleared the yeast from the spleen and liver, and the fungal burden decreased approximately 10(4) times in the lungs and brain 14 days after infection when compared to the PBS group (P < 0.05). This result was similar to that of the amphotericin B-treated group. Protection was suggestively due to in vivo antifungal activity of this drug and apparently not influenced by activation of the immune response, due to similar leukocyte cell counts among all groups. This study highlights the prospective use of beta-lapachone for treatment of disseminated cryptococcosis.
Resumo:
Leukotrienes are reported to be potent proinflammatory mediators that play a role in the development of several inflammatory diseases such as asthma, rheumatoid arthritis and periodontal disease. Leukotrienes have also been associated with protection against infectious diseases. However, the role of leukotrienes in Mycobacterium tuberculosis infection is not understood. To answer this question, we studied the role of leukotrienes in the protective immune response conferred by prime-boost heterologous immunization against tuberculosis. We immunized BALB/c mice (4-11/group) with subcutaneous BCG vaccine (1 x 10(5) M. bovis BCG) (prime) followed by intramuscular DNA-HSP65 vaccine (100 µg) (boost). During the 30 days following the challenge, the animals were treated by gavage daily with MK-886 (5 mg·kg-1·day-1) to inhibit leukotriene synthesis. We showed that MK-886-treated mice were more susceptible to M. tuberculosis infection by counting the number of M. tuberculosis colony-forming units in lungs. The histopathological analysis showed an impaired influx of leukocytes to the lungs of MK-886-treated mice after infection, confirming the involvement of leukotrienes in the protective immune response against experimental tuberculosis. However, prime-boost-immunized mice treated with MK-886 remained protected after challenge with M. tuberculosis, suggesting that leukotrienes are not required for the protective effect elicited by immunization. Protection against M. tuberculosis challenge achieved by prime-boost immunization in the absence of leukotrienes was accompanied by an increase in IL-17 production in the lungs of these animals, as measured by ELISA. Therefore, these data suggest that the production of IL-17 in MK-886-treated, immunized mice could contribute to the generation of a protective immune response after infection with M. tuberculosis.
Resumo:
The efficacy of endothelin receptor antagonists in protecting against myocardial ischemia/reperfusion (I/R) injury is controversial, and the mechanisms remain unclear. The aim of this study was to investigate the effects of CPU0123, a novel endothelin type A and type B receptor antagonist, on myocardial I/R injury and to explore the mechanisms involved. Male Sprague-Dawley rats weighing 200-250 g were randomized to three groups (6-7 per group): group 1, Sham; group 2, I/R + vehicle. Rats were subjected to in vivo myocardial I/R injury by ligation of the left anterior descending coronary artery and 0.5% sodium carboxymethyl cellulose (1 mL/kg) was injected intraperitoneally immediately prior to coronary occlusion. Group 3, I/R + CPU0213. Rats were subjected to identical surgical procedures and CPU0213 (30 mg/kg) was injected intraperitoneally immediately prior to coronary occlusion. Infarct size, cardiac function and biochemical changes were measured. CPU0213 pretreatment reduced infarct size as a percentage of the ischemic area by 44.5% (I/R + vehicle: 61.3 ± 3.2 vs I/R + CPU0213: 34.0 ± 5.5%, P < 0.05) and improved ejection fraction by 17.2% (I/R + vehicle: 58.4 ± 2.8 vs I/R + CPU0213: 68.5 ± 2.2%, P < 0.05) compared to vehicle-treated animals. This protection was associated with inhibition of myocardial inflammation and oxidative stress. Moreover, reduction in Akt (protein kinase B) and endothelial nitric oxide synthase (eNOS) phosphorylation induced by myocardial I/R injury was limited by CPU0213 (P < 0.05). These data suggest that CPU0123, a non-selective antagonist, has protective effects against myocardial I/R injury in rats, which may be related to the Akt/eNOS pathway.
Resumo:
We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay) and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with diphenyl diselenide (100 µM) completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect). Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.
Resumo:
The objective of this study was to evaluate the effects of tetramethylpyrazine (TMP) in combination with arsenic trioxide (As2O3) on the proliferation and differentiation of HL-60 cells. The HL-60 cells were treated with 300 µg/mL TMP, 0.5 µM As2O3, and 300 µg/mL TMP combined with 0.5 µM As2O3, respectively. The proliferative inhibition rates were determined with MTT. Differentiation was detected by the nitroblue tetrazolium (NBT) reduction test, Wright’s staining and the distribution of CD11b and CD14. Flow cytometry was used to analyze cell cycle distribution. RT-PCR and Western blot assays were employed to detect the expressions of c-myc, p27, CDK2, and cyclin E1. Combination treatment had synergistic effects on the proliferative inhibition rates. The rates were increased gradually after the combination treatment, much higher than those treated with the corresponding concentration of As2O3 alone. The cells exhibited characteristics of mature granulocytes and a higher NBT-reducing ability, being a 2.6-fold increase in the rate of NBT-positive ratio of HL-60 cells within the As2O3 treatment versus almost a 13-fold increase in the TMP + As2O3 group. Cells treated with both TMP and As2O3 expressed far more CD11b antigens, almost 2-fold compared with the control group. Small doses of TMP potentiate As2O3-induced differentiation of HL-60 cells, possibly by regulating the expression and activity of G0/G1 phase-arresting molecules. Combination treatment of TMP with As2O3 has significant synergistic effects on the proliferative inhibition of HL-60 cells.
Resumo:
The objective of the present study was to investigate the effects of 3-n-butylphthalide (NBP) on a 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of Parkinson’s disease (PD) and to illustrate the potential mechanism of autophagy in this process. For this purpose, rat PC12 pheochromocytoma cells were treated with MPP+ (1 mM) for 24 h following pretreatment with NBP (0.1 mM). Cell metabolic viability was determined by the MTT assay and cell ultrastructure was examined by transmission electron microscopy. The intracellular distribution and expression of α-synuclein and microtubule-associated protein light chain 3 (LC3) were detected by immunocytochemistry and Western blotting. Our results demonstrated that: 1) NBP prevented MPP+-induced cytotoxicity in PC12 cells by promoting metabolic viability. 2) NBP induced the accumulation of autophagosomes in MPP+-treated PC12 cells. 3) Further study of the molecular mechanism demonstrated that NBP enhanced the colocalization of α-synuclein and LC3 and up-regulated the protein level of LC3-II. These results demonstrate that NBP protects PC12 cells against MPP+-induced neurotoxicity by activating autophagy-mediated α-synuclein degradation, implying that it may be a potential effective therapeutic agent for the treatment of PD.
Resumo:
Human cytomegalovirus glycoprotein B (gB) represents a target for diagnosis and treatment in view of the role it plays in virus entry and spread. Nevertheless, to our knowledge, rare detection of a gB antigen has been reported in transplant patients and limited information is available about diagnostic gB monoclonal antibodies (mAbs). Our aim was to develop gB mAbs with diagnostic potential. Hydrophilic gB peptides (ST: amino acids 27-40, SH: amino acids 81-94) of favorable immunogenicity were synthesized and used to immunize BALB/c mice. Two mAbs, named ZJU-FH6 and ZJU-FE6, were generated by the hybridoma technique and limited serial dilution and then characterized by indirect ELISA, Western blotting, immunoprecipitation, and immunohistochemical staining. The mAbs displayed high titers of specific binding affinities for the ST and SH synthetic peptides at an mAb dilution of 1:60,000 and 1:240,000, respectively. Western blotting and immunoprecipitation indicated that these mAbs recognized both denatured and native gB of the Towne and AD169 strains. The mAbs, when used as the primary antibody, showed positive staining in cells infected with both Towne and AD169 strains. The mAbs were then tested on patients submitted to allogeneic hematopoietic stem cell transplantation. The gB antigen positivity rates of the patients tested using ZJU-FH6 and ZJU-FE6 were 62.0 and 63.0%, respectively. The gB antigen showed a significant correlation with the level of pp65 antigen in peripheral blood leukocytes. In conclusion, two potential diagnostic gB mAbs were developed and were shown to be capable of recognizing gB in peripheral blood leukocytes in a reliable manner.
Resumo:
The objective of this study was to evaluate the effect of short-term levosimendan exposure on oxidant/antioxidant status and trace element levels in the testes of rats under physiological conditions. Twenty male Wistar albino rats were randomly divided into two groups of 10 animals each. Group 1 was not exposed to levosimendan and served as control. Levosimendan (12 µg/kg) diluted in 10 mL 0.9% NaCl was administered intraperitoneally to group 2. Animals of both groups were sacrificed after 3 days and their testes were harvested for the determination of changes in tissue oxidant/antioxidant status and trace element levels. Tissue malondialdehyde (MDA) was significantly lower in the levosimendan group (P < 0.001) than in the untreated control group and superoxide dismutase and glutathione peroxidase (GSH-Px) levels were significantly higher in the levosimendan group (P < 0.001). Carbonic anhydrase, catalase and GSH levels were not significantly different from controls. Mg and Zn levels of testes were significantly higher (P < 0.001) and Co, Pb, Cd, Mn, and Cu were significantly lower (P < 0.001) in group 2 compared to group 1. Fe levels were similar for the two groups (P = 0.94). These results suggest that 3-day exposure to levosimendan induced a significant decrease in tissue MDA level, which is a lipid peroxidation product and an indicator of oxidative stress, and a significant increase in the activity of an important number of the enzymes that protect against oxidative stress in rat testes.
Resumo:
The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.
Resumo:
The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt max) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.
Resumo:
Serogroup B Neisseria meningitidis (MenB) is a major cause of invasive disease in early childhood worldwide. The only MenB vaccine available in Brazil was produced in Cuba and has shown unsatisfactory efficacy when used to immunize millions of children in Brazil. In the present study, we compared the specific functional antibody responses evoked by the Cuban MenB vaccine with a standard vaccine against diphtheria (DTP: diphtheria, tetanus, pertussis) after primary immunization and boosting of mice. The peak of bactericidal and opsonic antibody titers to MenB and of neutralizing antibodies to diphtheria toxoid (DT) was reached after triple immunization with the MenB vaccine or DTP vaccine, respectively. However, 4 months after immunization, protective DT antibody levels were present in all DTP-vaccinated mice but in only 20% of the mice immunized against MenB. After 6 months of primary immunization, about 70% of animals still had protective neutralizing DT antibodies, but none had significant bactericidal antibodies to MenB. The booster doses of DTP or MenB vaccines produced a significant antibody recall response, suggesting that both vaccines were able to generate and maintain memory B cells during the period studied (6 months post-triple immunization). Therefore, due to the short duration of serological memory induced by the MenB vaccine (VA-MENGOC-BC® vaccine), its use should be restricted to outbreaks of meningococcal disease.
Resumo:
Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.
Resumo:
Intercellular adhesion molecule-1 (ICAM-1) is an important factor in the progression of inflammatory responses in vivo. To develop a new anti-inflammatory drug to block the biological activity of ICAM-1, we produced a monoclonal antibody (Ka=4.19×10−8 M) against human ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv) was expressed at a high level as inclusion bodies in Escherichia coli. We refolded the scFv (Ka=2.35×10−7 M) by ion-exchange chromatography, dialysis, and dilution. The results showed that column chromatography refolding by high-performance Q Sepharose had remarkable advantages over conventional dilution and dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher with this method. The purity of the final product was greater than 90%, as shown by denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and animal experiments were used to assess the immunological properties and biological activities of the renatured scFv.
Resumo:
The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.
Resumo:
This study investigated the in vitro and in vivo antiproliferative activity of esculetin against hepatocellular carcinoma, and clarified its potential molecular mechanisms. Cell viability was determined by the MTT (tetrazolium) colorimetric assay. In vivoantitumor activity of esculetin was evaluated in a hepatocellular carcinoma mouse model. Seventy-five C57BL/6J mice were implanted with Hepa1-6 cells and randomized into five groups (n=15 each) given daily intraperitoneal injections of vehicle (physiological saline), esculetin (200, 400, or 700 mg·kg-1·day-1), or 5-Fu (200 mg·kg-1·day-1) for 15 days. Esculetin significantly decreased tumor growth in mice bearing Hepa1-6 cells. Tumor weight was decreased by 20.33, 40.37, and 55.42% with increasing doses of esculetin. Esculetin significantly inhibited proliferation of HCC cells in a concentration- and time-dependent manner and with an IC50 value of 2.24 mM. It blocked the cell cycle at S phase and induced apoptosis in SMMC-7721 cells with significant elevation of caspase-3 and caspase-9 activity, but did not affect caspase-8 activity. Moreover, esculetin treatment resulted in the collapse of mitochondrial membrane potential in vitro and in vivo accompanied by increased Bax expression and decreased Bcl-2 expression at both transcriptional and translational levels. Thus, esculetin exerted in vitro and in vivo antiproliferative activity in hepatocellular carcinoma, and its mechanisms involved initiation of a mitochondrial-mediated, caspase-dependent apoptosis pathway.