966 resultados para Perfect Pyramids
Resumo:
Since the alkyl esters of p-hydroxybenzoic acid (parabens) can be measured intact in the human breast and possess oestrogenic properties, it has been suggested that they could contribute to an aberrant burden of oestrogen signalling in the human breast and so play a role in the rising incidence of breast cancer. However, although parabens have been shown to regulate a few single genes (reporter genes, pS2, progesterone receptor) in a manner similar to that of 17 beta-oestradiol, the question remains as to the full extent of the similarity in the overall gene profile induced in response to parabens compared with 17 beta-oestradiol. The GE-Amersham CodeLink 20 K human expression microarray system was used to profile the expression of 19881 genes in MCF7 human breast cancer cells following a 7-day exposure to 5 x 10(-4) m methylparaben, 10(-5) m n-butylparaben and 10(-8) m 17 beta-oestradiol. At these concentrations, the parabens gave growth responses in MCF7 cells of similar magnitude to 17 beta-oestradiol. The study identified genes which are upregulated or downregulated to a similar extent by methylparaben, n-butylparaben and 17 beta-oestradiol. However, the majority of genes were not regulated in the same way by all three treatments. Some genes responded differently to parabens from 17 beta-oestradiol, and furthermore, differences in expression of some genes could be detected even between the two individual parabens. Therefore, although parabens possess oestrogenic properties, their mimicry in terms of global gene expression patterns is not perfect and differences in gene expression profiles could result in consequences to the cells that are not identical to those following exposure to 17 beta-oestradiol. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Microsatellite lengths change over evolutionary time through a process of replication slippage. A recently proposed model of this process holds that the expansionary tendencies of slippage mutation are balanced by point mutations breaking longer microsatellites into smaller units and that this process gives rise to the observed frequency distributions of uninterrupted microsatellite lengths. We refer to this as the slippage/point-mutation theory. Here we derive the theory's predictions for interrupted microsatellites comprising regions of perfect repeats, labeled segments, separated by dinucleotide interruptions containing point mutations. These predictions are tested by reference to the frequency distributions of segments of AC microsatellite in the human genome, and several predictions are shown not to be supported by the data, as follows. The estimated slippage rates are relatively low for the first four repeats, and then rise initially linearly with length, in accordance with previous work. However, contrary to expectation and the experimental evidence, the inferred slippage rates decline in segments above 10 repeats. Point mutation rates are also found to be higher within microsatellites than elsewhere. The theory provides an excellent fit to the frequency distribution of peripheral segment lengths but fails to explain why internal segments are shorter. Furthermore, there are fewer microsatellites with many segments than predicted. The frequencies of interrupted microsatellites decline geometrically with microsatellite size measured in number of segments, so that for each additional segment, the number of microsatellites is 33.6% less. Overall we conclude that the detailed structure of interrupted microsatellites cannot be reconciled with the existing slippage/point-mutation theory of microsatellite evolution, and we suggest that microsatellites are stabilized by processes acting on interior rather than on peripheral segments.
Resumo:
Reaction of fac-[ Mo( CO)(3)( NCMe)(3)] with three equivalents of NCCH2(C4H3S- 3) in acetonitrile gives the tris(thiophene- 3- acetonitrile) complex, fac-[Mo(CO)(3){NCCH2(C4H3S-3)}(3)] (1) in 7% yield. Complex 1 crystallizes out in the orthorhombic space group Pnma with a = 12.714( 17), b = 16.41( 2), c = 11.304(16) Angstrom, Z = 4. The structure has crystallographic m symmetry and the metal is in an almost perfect octahedral environment, with a facial arrangement of carbonyl and thiophene- 3- acetonitrile groups. The thiophene rings are disordered.
Resumo:
We have performed the first completely ab initio lattice dynamics calculation of the full orthorhombic cell of polyethylene using periodic density functional theory in the local density approximation (LDA) and the generalized gradient approximation (GGA). Contrary to current perceptions, we show that LDA accurately describes the structure whereas GGA fails. We emphasize that there is no parametrization of the results. We then rigorously tested our calculation by computing the phonon dispersion curves across the entire Brillouin zone and comparing them to the vibrational spectra, in particular the inelastic neutron scattering (INS) spectra, of polyethylene (both polycrystalline and aligned) and perdeuteriopolyethylene. The F-point frequencies (where the infrared and Raman active modes occur) are in good agreement with the latest low temperature data. The near-perfect reproduction of the INS spectra, gives confidence in the results and allows Lis to deduce a number of physical properties including the elastic moduli, parallel and perpendicular to the chain. We find that the Young's modulus for an infinitely long, perfectly crystalline polyethylene is 360.2 GPa at 0 K. The highest experimental value is 324 GPa, indicating that current high modulus fibers are similar to 90% of their maximum possible strength.
Resumo:
The surface structure of BaO(111) has been determined using STM and computer modelling. The BaO(111) surface was prepared in thin film form on Pt(111) and presents a surface with twice the lattice parameter expected for that of the bulk termination, i.e. a (2 x 2) reconstruction. Computer modelling indicates that the bulk termination is unstable, but that the (2 x 2) reconstructed BaO(111) surface has a low surface energy and is hence a stable surface reconstruction. The (2 x 2) reconstruction consists of small, three-sided pyramids with (100) oriented sides and either oxygen or barium ions at the apices. Less regular surface reconstructions containing the same pyramids are almost equally stable, indicating that we may also expect less regular regions to appear with a fairly random distribution of these surface species. The simulations further suggest that a regular (4 x 4) reconstruction built up of bigger pyramids is even more energetically favourable, and some evidence is found for such a structure in the STM. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Two new iron thioantimonates, [Fe(en)(3)](2)Sb2S5 (.) 0.55H(2)O (1) and [Fe(en)(3)](2)Sb4S8 (2). were synthesised under solvothermal conditions from the reactions of Sb2S3, FeCl2 and S in the presence of ethylenediamine at 413 and 438 K, respectively. The products were characterised by single-crystal X-ray diffraction, elemental analysis and SQUID magnetometry. Compound 1 is unusual in containing isolated Sb2S54- anions formed from two corner-sharing SbS33- trigonal pyramids. These units are arranged in rippled layers, 4 A apart, parallel to the bc-plane. Octahedrally coordinated [Fe(en)(3)](2+) cations lie in depressions within these anionic layers. In compound (2), repeated corner linking of SbS33- trigonal pyramids generates SbS2- chains, which may be considered as a polymerised form of the Sb2S54- anions in 1. The SbS2- chains are separated by [Fe(en)(3)](2+) cations. In both compounds, there is an extensive network of hydrogen bonds between the nitrogen atoms of the ethylenediamine ligands and the sulfur atoms of the anions and, in the case of 1, the uncoordinated water molecule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The chromium(II) antimony(III) sulphicle, [Cr((NH2CH2CH2)(3)N)]Sb4S7, was synthesised under solvothermal conditions from the reaction of Sb2S3. Cr and S dissolved in tris(2-aminoethyl)amine (tren) at 438 K. The products were characterised by single-crystal X-ray diffraction. elemental analysis, SQUID magnetometry and diffuse reflectance spectroscopy. The compound crystallises in the monoclinic space group P2(1)/n with a = 7.9756(7), b = 10.5191(9), c = 25.880(2) angstrom and beta = 90.864(5)degrees. Alternating SbS33- trigonal pyramids and Sb36 semi-cubes generate Sb4S72- chains which are directly bonded to Cr(tren pendant units. The effective magnetic moment of 4.94(6)mu(B) shows a negligible orbital contribution, in agreement with expectations for Cr(II):d(4) in a (5)A ground state. The measured band gap of 2.14(3) eV is consistent with a correlation between optical band gap and framework density that is established from analysis of a wide range of antimony sulphides. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.
Resumo:
Two new antimony sulphides have been prepared solvothermally and characterised by single-crystal X-ray diffraction. [Co(en)(3)][Sb4S7] (1) was prepared at 140 degreesC from COS, Sb2S3 and S in the presence of ethylenediamine, whilst heating a mixture of Sb2S3, Co and S in tris(2aminoethyl)amine, N(CH2CH2NH2)(3), at 180 degreesC fegults in the formation of [C6H20N4][Sb4S7] (2). Both materials contain [Sb4S7](2-) chains formed from linkage of cyclic Sb3S63- units by SbS33- pyramids. In (1), the [Sb4S7] chains are linked by secondary Sb-S interactions to form sheets, between which the. charge balancing [Co(en)(3)](2+) cations reside. The structure of (2) involves interconnection of pairs of [Sb4S7](2-) chains through Sb2S2 rings to form isolated [Sb4S7](2-) double chains which are interleaved by protonated template molecules. (C) 2004 Elsevier B.V. All rights resereved.
Resumo:
The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror system plasticity is sensitive to contingency (i.e., the extent to which activation of one representation predicts activation of another). In Experiment 1, residual automatic imitation was measured following incompatible training in which the action stimulus was a perfect predictor of the response (contingent) or not at all predictive of the response (noncontingent). A contingency effect was observed: There was less automatic imitation indicative of more learning in the contingent group. Experiment 2 replicated this contingency effect and showed that, as predicted by associative learning theory, it can be abolished by signaling trials in which the response occurs in the absence of an action stimulus. These findings support the view that mirror system development depends on associative learning and indicate that this learning is not purely Hebbian. If this is correct, associative learning theory could be used to explain, predict, and intervene in mirror system development.
Resumo:
The adsorption of water on a model hexagonal surface has been studied using accurate intermolecular potentials. The structure and binding energies of single molecules, clusters, and adlayers are obtained. The limiting case of weak, nondirectional surface-water interactions presented here is compared with other cases involving water-water and water-surface interactions of a similar magnitude (partial templating) and dominating water-surface interactions (perfect templating) from the literature. None of these models is conducive to the nucleation of ice, each for different reasons.Wecommenton the requirements for a good ice-nucleating surface.
Resumo:
The predictability of ocean and climate variables is investigated, using a perfect model-based case study approach that recognises that predictability is dependent on the initial climate state. In line with previous studies, large scale ocean variables, show predictability for several years or more; by contrast, the predictability of climate variables is generally limited to, 2 years at most. That predictability shows high sensitivity to the initial state is demonstrated by predictable climate signals, arising in different regions, variables and seasons for different initial conditions. The predictability of climate variables, in the second year is of particular interest, because this is beyond the timescale that is usually considered to be the limit, of seasonal predictability. For different initial conditions, second year predictability is found in: temperatures in southeastern, North America (winter) and western Europe (winter and summer), and precipitation in India (summer monsoon) and in the tropical, South Atlantic. Second year predictability arises either from persistence of large-scale sea surface temperature (SST) and, related ocean heat content anomalies, particularly in regions such as the North Atlantic and Southern Ocean, or from mechanisms, that involve El Nino Southern Oscillation (ENSO) dynamics.
Resumo:
This short contribution examines the difficulties that have not yet been fully overcome in the many developments made from the simplest (and original) tube model for entangled polymers. It is concluded that many more length scales have to be considered sequentially when deriving a continuum rheological model from molecular considerations than have been considered in the past. In particular, most unresolved issues of the tube theory are related to the length scales of tube diameter, and molecular dynamics simulations is the perfect route to resolve them. The power of molecular simulations is illustrated by two examples: stress contributions from bonded and non-bonded interaction, and the inter-chain coupling, which is usually neglected in the tube theory.
Resumo:
This is a report on the data-mining of two chess databases, the objective being to compare their sub-7-man content with perfect play as documented in Nalimov endgame tables. Van der Heijden’s ENDGAME STUDY DATABASE IV is a definitive collection of 76,132 studies in which White should have an essentially unique route to the stipulated goal. Chessbase’s BIG DATABASE 2010 holds some 4.5 million games. Insight gained into both database content and data-mining has led to some delightful surprises and created a further agenda.