925 resultados para Pathway
Resumo:
Polarized growth in yeast requires cooperation between the polarized actin cytoskeleton and delivery of post-Golgi secretory vesicles. We have previously reported that loss of the major tropomyosin isoform, Tpm1p, results in cells sensitive to perturbations in cell polarity. To identify components that bridge these processes, we sought mutations with both a conditional defect in secretion and a partial defect in polarity. Thus, we set up a genetic screen for mutations that conferred a conditional growth defect, showed synthetic lethality with tpm1Δ, and simultaneously became denser at the restrictive temperature, a hallmark of secretion-defective cells. Of the 10 complementation groups recovered, the group with the largest number of independent isolates was functionally null alleles of RAS2. Consistent with this, ras2Δ and tpm1Δ are synthetically lethal at 35°C. We show that ras2Δ confers temperature-sensitive growth and temperature-dependent depolarization of the actin cytoskeleton. Furthermore, we show that at elevated temperatures ras2Δ cells are partially defective in endocytosis and show a delocalization of two key polarity markers, Myo2p and Cdc42p. However, the conditional enhanced density phenotype of ras2Δ cells is not a defect in secretion. All the phenotypes of ras2Δ cells can be fully suppressed by expression of yeast RAS1 or RAS2 genes, human Ha-ras, or the double disruption of the stress response genes msn2Δmsn4Δ. Although the best characterized pathway of Ras function in yeast involves activation of the cAMP-dependent protein kinase A pathway, activation of the protein kinase A pathway does not fully suppress the actin polarity defects, suggesting that there is an additional pathway from Ras2p to Msn2/4p. Thus, Ras2p regulates cytoskeletal polarity in yeast under conditions of mild temperature stress through the stress response pathway.
Resumo:
It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factor–factor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factor–factor VIIa interaction.
Resumo:
The hair follicle is a cyclic, self renewing epidermal structure which is thought to be controlled by signals from the dermal papilla, a specialized cluster of mesenchymal cells within the dermis. Topical treatments with 17-beta-estradiol to the clipped dorsal skin of mice arrested hair follicles in telogen and produced a profound and prolonged inhibition of hair growth while treatment with the biologically inactive stereoisomer, 17-alpha-estradiol, did not inhibit hair growth. Topical treatments with ICI 182,780, a pure estrogen receptor antagonist, caused the hair follicles to exit telogen and enter anagen, thereby initiating hair growth. Immunohistochemical staining for the estrogen receptor in skin revealed intense and specific staining of the nuclei of the cells of the dermal papilla. The expression of the estrogen receptor in the dermal papilla was hair cycle-dependent with the highest levels of expression associated with the telogen follicle. 17-beta-Estradiol-treated epidermis demonstrated a similar number of 5-bromo-2'-deoxyuridine (BrdUrd) S-phase cells as the control epidermis above telogen follicles; however, the number of BrdUrd S-phase basal cells in the control epidermis varied according to the phase of the cycle of the underlying hair follicles and ranged from 2.6% above telogen follicles to 7.0% above early anagen follicles. These findings indicate an estrogen receptor pathway within the dermal papilla regulates the telogen-anagen follicle transition and suggest that diffusible factors associated with the anagen follicle influence cell proliferation in the epidermis.
Resumo:
trkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF), a trophic molecule with demonstrated effects on the survival and differentiation of a wide variety of neuronal populations. In the mammalian retina, trkB is localized to both ganglion cells and numerous cells in the inner nuclear layer. Much information on the role of BDNF in neuronal development has been derived from the study of trkB- and BDNF-deficient mutant mice. This includes an attenuation of the numbers of cortical neurons immunopositive for the calcium-binding proteins, parvalbumin, and calbindin. Unfortunately, these mutant animals typically fail to survive for > 24-48 hr after birth. Since most retinal neuronal differentiation occurs postnatally, we have devised an alternative scheme to suppress the expression of trkB in the retina to examine the role of BDNF on the postnatal development of neurons of the inner retina. Neonatal rats were treated with intraocular injection of an antisense oligonucleotide (1-2 microliters of 10-100 microM solution) targeted to the trkB mRNA. Immunohistochemistry with a polyclonal antibody to trkB showed that the expression of trkB in retinal neurons was suppressed 48-72 hr following a single injection. Northern blot analysis demonstrated that antisense treatment had no effect on the level of trkB mRNA, even after multiple injections. This suggests an effect of trkB antisense treatment on protein translation, but not on RNA transcription. No alterations were observed in the thickness of retinal cellular or plexiform layers, suggesting that BDNF is not the sole survival factor for these neurons. There were, however, alterations in the patterns of immunostaining for parvalbumin, a marker for the narrow-field, bistratified AII amacrine cell-a central element of the rod (scotopic) pathway. This was evidenced by a decrease in both the number of immunostained somata (> 50%) and in the intensity of immunolabeling. However, the immunostaining pattern of calbindin was not affected. These studies suggest that the ligands for trkB have specific effects on the neurochemical phenotypic expression of inner retinal neurons and in the development of a well-defined retinal circuit.
Resumo:
Cytotoxic T lymphocytes (CTL) can induce apoptosis through a granzyme B-based killing mechanism. Here we show that in cells undergoing apoptosis by granzyme B, both p45 pro-interleukin 1 beta converting enzyme (ICE) and pro-CPP32 are processed. Using ICE deficient (ICE -/-) mice, embryonic fibroblasts exhibit high levels of resistance to apoptosis by granzyme B or granzyme 3, while B lymphoblasts are granzyme B-resistant, thus identifying an ICE-dependent apoptotic pathway that is activated by CTL granzymes. In contrast, an alternative ICE-independent pathway must also be activated as ICE -/- thymocytes remain susceptible to apoptosis by both granzymes. In ICE -/- B cells or HeLa cells transfected with mutant inactive ICE or Ich-1S that exhibit resistance to granzyme B, CPP32 is processed to p17 and poly(ADP-ribose) polymerase is cleaved indicating that this protease although activated was not associated with an apoptotic nuclear phenotype. Using the peptide inhibitor Ac-DEVD-CHO, apoptosis as well as p45 ICE hydrolysis are suppressed in HeLa cells, suggesting that a CPP32-like protease is upstream of ICE. In contrast, p34cdc2 kinase, which is required for granzyme B-induced apoptosis, remains inactive in ICE -/- B cells indicating it is downstream of ICE. We conclude that granzyme B activates an ICE-dependent cell death pathway in some cell types and requires a CPP32-like Ac-DEVD-CHO inhibitable protease acting upstream to initiate apoptosis.
Resumo:
Yeast and animals use mitogen-activated protein (MAP) kinase cascades to mediate stress and extracellular signals. We have tested whether MAP kinases are involved in mediating environmental stress responses in plants. Using specific peptide antibodies that were raised against different alfalfa MAP kinases, we found exclusive activation of p44MMK4 kinase in drought- and cold-treated plants. p44MMK4 kinase was transiently activated by these treatments and was correlated with a shift in the electrophoretic mobility of the p44MMK4 protein. Although transcript levels of the MMK4 gene accumulated after drought and cold treatment, no changes in p44MMK4 steady state protein levels were observed, indicating a posttranslational activation mechanism. Extreme temperatures, drought, and salt stress are considered to be different forms of osmotic stress. However, high salt concentrations or heat shock did not induce activation of p44MMK4, indicating the existence of distinct mechanisms to mediate different stresses in alfalfa. Stress adaptation in plants is mediated by abscisic acid (ABA)-dependent and ABA-independent processes. Although ABA rapidly induced the transcription of an ABA-inducible marker gene, MMK4 transcript levels did not increase and p44MMK4 kinase was not activated. These data indicate that the MMK4 kinase pathway mediates drought and cold signaling independently of ABA.
Resumo:
The neural pathway that governs an escape response of Drosophila to sudden changes in light intensity can be artificially induced by electrical stimulation of the brain and monitored by electrical recording from the effector muscles. We have refined previous work in this system to permit reliable ascertainment of two kinds of response: (i) a short-latency response that follows from direct excitation of a giant fiber neuron in the interior of the fly brain and (ii) a long-latency response in which electrical stimulation triggers neurons in the optic ganglia that ultimately impinge on the giant fiber neuron. The general anesthetic halothane is reported here to have very different potencies in inhibiting these two responses. The long-latency response is obliterated at concentrations similar to those that cause gross behavioral effects in adult flies, whereas the short-latency response is only partially inhibited at doses that are 10-fold higher. Three other volatile anesthetic agents show a similar pattern. Thus, as in higher organisms, the Drosophila nervous system is differentiated into components of high and low sensitivity to general anesthetics. Moreover, this work shows that one of the sensitive components of the nervous system lies in the optic lobe and is readily assayed by its effect on downstream systems; it should provide a focus for exploring the effects of genetic alteration of anesthetic sensitivity.
Resumo:
In plants, gibberellin (GA)-responding mutants have been used as tools to identify the genes that control specific steps in the GA-biosynthetic pathway. They have also been used to determine which native GAs are active per se, i.e., further metabolism is not necessary for bioactivity. We present metabolic evidence that the D1 gene of maize (Zea mays L.) controls the three biosynthetic steps: GA20 to GA1, Ga20 to GA5, and GA5 to GA3. We also present evidence that three gibberellins, GA1, GA5, and GA3, have per se activity in stimulating shoot elongation in maize. The metabolic evidence comes from the injection of [17-13C,3H]GA20 and [17-13C,3H]GA5 into seedlings of d1 and controls (normal and d5), followed by isolation and identification of the 13C-labeled metabolites by full-scan GC-MS and Kovats retention index. For the controls, GA20 was metabolized to GA1,GA3, and GA5; GA5 was metabolized to GA3. For the d1 mutant, GA20 was not metabolized to GA1, GA3, or to GA5, and GA5 was not metabolized to GA3. The bioassay evidence is based on dosage response curves using d1 seedlings for assay. GA1, GA3, and GA5 had similar bioactivities, and they were 10-times more active than GA20.
Resumo:
During receptor mediated endocytosis, at least a fraction of recycling cargo typically accumulates in a pericentriolar cluster of tubules and vesicles. However, it is not clear if these endosomal structures are biochemically distinct from the early endosomes from which they are derived. To better characterize this pericentriolar endosome population, we determined the distribution of two endogenous proteins known to be functionally involved in receptor recycling [Rab4, cellubrevin (Cbvn)] relative to the distribution of a recycling ligand [transferrin (Tfn)] as it traversed the endocytic pathway. Shortly after internalization, Tfn entered a population of early endosomes that contained both Rab4 and Cbvn, demonstrated by triple label immunofluorescence confocal microscopy. Tfn then accumulated in the pericentriolar cluster of recycling vesicles (RVs). However, although these pericentriolar endosomes contained Cbvn, they were strikingly depleted of Rab4. The ability of internalized Tfn to reach the Rab4-negative population was not blocked by nocodazole, although the characteristic pericentriolar location of the population was not maintained in the absence of microtubules. Similarly, Rab4-positive and -negative populations remained distinct in cells treated with brefeldin A, with only Rab4-positive elements exhibiting the extended tubular morphology induced by the drug. Thus, at least with respect to Rab4 distribution, the pathway of Tfn receptor recycling consists of at least two biochemically and functionally distinct populations of endosomes, a Rab4-positive population of early endosomes to which incoming Tfn is initially delivered and a Rab4-negative population of recycling vesicles that transiently accumulates Tfn on its route back to the plasma membrane.
Resumo:
Signaling through the interleukin 2 receptor (IL-2R) involves phosphorylation of several proteins including Jak3, STAT5, and, in preactivated cells, STAT3. In the present study, we examined the functional status of the IL-2R-associated Jak/STAT pathway in malignant T lymphocytes from advanced skin-based lymphomas: anaplastic large T-cell lymphoma (ALCL) and Sezary syndrome (SzS). Proliferation of three ALCL cell lines (PB-1, 2A, and 2B) was partially inhibited by rapamycin, a blocker of some of the signals mediated by IL-2R, but not by cyclosporin A, FK-506, and prednisone, which suppress signals mediated by the T-cell receptor. All the cell lines expressed on their surface the high-affinity IL-2R (alpha, beta, and gamma c chains). They showed basal, constitutive phosphorylation, and coassociation of Jak3, STAT5, and STAT3. Weak basal phosphorylation of IL-2R gamma c was also detected. In regard to SzS, peripheral blood mononuclear cells from 10 of 14 patients showed basal phosphorylation of Jak3, accompanied by phosphorylation of STAT5 in 9 patients, and STAT3 in 4 patients. However, in vitro overnight culture of SzS cells without exogenous cytokines resulted in markedly decreased Jak3 and STAT5 phosphorylation, which could be reversed by stimulation with IL-2. This indicates that the basal phosphorylation of Jak3 and STAT5 in freshly isolated SzS cells is induced rather than constitutive. The basal activation of the Jak/STAT pathway involved in IL-2R signal transduction in ALCL and SzS cells reported here suggests that this pathway may play a role in the pathogenesis of cutaneous T-cell lymphomas, although the mechanism (induced versus constitutive) may vary between different lymphoma types.