982 resultados para Participatory science
Resumo:
In his presidential address to the Belfast meeting of the British Association for the Advancement of Science in 1874, John Tyndall launched what David Livingstone has called a ‘frontal assault on teleology and Christian theism’. Using Tyndall's intervention as a starting point, this paper seeks to understand the attitudes of Presbyterians in the north of Ireland to science in the first three-quarters of the nineteenth century. The first section outlines some background, including the attitude of Presbyterians to science in the eighteenth century, the development of educational facilities in Ireland for the training of Presbyterian ministers, and the specific cultural and political circumstances in Ireland that influenced Presbyterian responses to science more generally. The next two sections examine two specific applications by Irish Presbyterians of the term ‘science’: first, the emergence of a distinctive Presbyterian theology of nature and the application of inductive scientific methodology to the study of theology, and second, the Presbyterian conviction that mind had ascendancy over matter which underpinned their commitment to the development of a science of the mind. The final two sections examine, in turn, the relationship between science and an eschatological reading of the signs of the times, and attitudes to Darwinian evolution in the fifteen years between the publication of The Origin of Species in 1859 and Tyndall's speech in 1874.
Resumo:
HOX genes are evolutionarily highly conserved. The HOX proteins which they encode are master regulators of embryonic development and continue to be expressed throughout postnatal life. The 39 human HOX genes are located in four clusters (A-D) on different chromosomes at 7p15, 17q21 [corrected] 12q13, and 2q31 respectively and are assumed to have arisen by duplication and divergence from a primordial homeobox gene. Disorders of limb formation, such as hand-foot-genital syndrome, have been traced to mutations in HOXA13 and HOXD13. Evolutionary conservation provides unlimited scope for experimental investigation of the functional control of the Hox gene network which is providing important insights into human disease. Chromosomal translocations involving the MLL gene, the human homologue of the Drosophila gene trithorax, create fusion genes which exhibit gain of function and are associated with aggressive leukaemias in both adults and children. To date 39 partner genes for MLL have been cloned from patients with leukaemia. Models based on specific translocations of MLL and individual HOX genes are now the subject of intense research aimed at understanding the molecular programs involved, and ultimately the design of chemotherapeutic agents for leukaemia. Investigation of the role of HOX genes in cancer has led to the concept that oncology may recapitulate ontology, a challenging postulate for experimentalists in view of the functional redundancy implicit in the HOX gene network.