982 resultados para Palladium(II) complexes


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A hyperphosphorylated form of the largest subunit of RNA polymerase II (pol IIo) is associated with the pre-mRNA splicing process. Pol IIo was detected in association with a subset of small nuclear ribonucleoprotein particle and Ser-Arg protein splicing factors and also with pre-mRNA splicing complexes assembled in vitro. A subpopulation of pol IIo was localized to nuclear "speckle" domains enriched in splicing factors, indicating that it may also be associated with RNA processing in vivo. Moreover, pol IIo was retained in a similar pattern following in situ extraction of cells and was quantitatively recovered in the nuclear matrix fraction. The results implicate nuclear matrix-associated hyperphosphorylated pol IIo as a possible link in the coordination of transcription and splicing processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La présentation antigénique par les molécules de classe II du complexe majeur d’histocompatibilité (CMH II) est un mécanisme essentiel au contrôle des pathogènes par le système immunitaire. Le CMH II humain existe en trois isotypes, HLA-DP, DQ et DR, tous des hétérodimères composés d’une chaîne α et d’une chaîne β. Le CMH II est entre autres exprimé à la surface des cellules présentatrices d’antigènes (APCs) et des cellules épithéliales activées et a pour fonction de présenter des peptides d’origine exogène aux lymphocytes T CD4+. L’oligomérisation et le trafic intracellulaire du CMH II sont largement facilités par une chaperone, la chaîne invariante (Ii). Il s’agit d’une protéine non-polymorphique de type II. Après sa biosynthèse dans le réticulum endoplasmique (ER), Ii hétéro- ou homotrimérise, puis interagit via sa région CLIP avec le CMH II pour former un complexe αβIi. Le complexe sort du ER pour entamer son chemin vers différents compartiments et la surface cellulaire. Chez l’homme, quatre isoformes d’Ii sont répertoriées : p33, p35, p41 et p43. Les deux isoformes exprimées de manière prédominante, Iip33 et p35, diffèrent par une extension N-terminale de 16 acides aminés portée par Iip35. Cette extension présente un motif de rétention au réticulum endoplasmique (ERM) composé des résidus RXR. Ce motif doit être masqué par la chaîne β du CMH II pour permettre au complexe de quitter le ER. Notre groupe s’est intéressé au mécanisme du masquage et au mode de sortie du ER des complexes αβIi. Nous montrons ici que l’interaction directe, ou en cis, entre la chaîne β du CMH II et Iip35 dans une structure αβIi est essentielle pour sa sortie du ER, promouvant la formation de structures de haut niveau de complexité. Par ailleurs, nous démontrons que NleA, un facteur de virulence bactérien, permet d’altérer le trafic de complexes αβIi comportant Iip35. Ce phénotype est médié par l’interaction entre p35 et les sous-unités de COPII. Bref, Iip35 joue un rôle central dans la formation des complexes αβIi et leur transport hors du ER. Ceci fait d’Iip35 un régulateur clef de la présentation antigénique par le CMH II.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three-dimensional branched nature of dendritic macromolecules provides many potential sites per molecule for the complexation of metal ions. Therefore, dendrimers may act as hosts for metals with coordination potentially occurring at the periphery, the interior, or both. To understand further the complexation of dendrimers with metal ions EXAFS experiments were carried out. In this work, the interaction of amine-terminated polyamido(amine), PAMAM, dendrimer with copper(II) ions determined by EXAFS is reported. It was found that a model consisting of the copper(II) ion forming five- and six-membered rings by chelating with the primary amine, amide, and tertiary amine nitrogen donors of the PAMAM dendrimer could describe the experimental EXAFS data well. Corroborative evidence for binding to amide nitrogen donors comes from the broadening of NMR resonances of a copper(Il)-PAMAM mixture revealing the presence of paramagnetic copper(II) ions at these sites. The significance of the results presented in this paper is that copper(II) ions form complexes within the dendrimer structure and not just at the periphery. The current study may have implications for the use of PAMAM dendrimers as effective ligands in sensing systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper(II) bromide and chloride complexes of the new heptadentate ligand 2,6-bis(bis(2-pyridylmethyl)amino)methylpyridine (L) have been prepared. For the bromide complexes, chains of novel, approximately C-2-symmetric, chiral [Cu-2(L)Br-2](2+) 'wedge-shaped' tectons are found. The links between the dicopper tectons and the overall chirality and packing of the chains are dictated by the bromide ion content, not the counter anion. In contrast, the chloride complexes exhibit linked asymmetric [Cu-2(L)Cl-3](+) tectons with distinct N3CuCl2 and N4CuCl2 centres in the solid. The overall structures of the dicopper bromide and chloride units persist in solution irrespective of the halide. The redox chemistry of the various species is also described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports the in vitro activity against Plasmodium falciparum blood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of near-infrared and infrared spectroscopy has been used for identification and distinction of basic Cu-sulphates that include devilline, chalcoalumite and caledonite. Near-infrared spectra of copper sulphate minerals confirm copper in divalent state. Jahn-Teller effect is more significant in chalcoalumite where 2B1g ® 2B2g transition band shows a larger splitting (490 cm-1) confirming more distorted octahedral coordination of Cu2+ ion. One symmetrical band at 5145 cm-1 with shoulder band 5715 cm-1 result from the absorbed molecular water in the copper complexes are the combinations of OH vibrations of H2O. One sharp band at around 3400 cm-1 in IR common to the three complexes is evidenced by Cu-OH vibrations. The strong absorptions observed at 1685 and 1620 cm-1 for water bending modes in two species confirm strong hydrogen bonding in devilline and chalcoalumite. The multiple bands in v3 and v4(SO4)2- stretching regions are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. Chalcoalumite, the excellent IR absorber over the range 3800-500 cm-1 is treated as most efficient heat insulator among the Cu-sulphate complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dye-sensitised solar cells have emerged as an important developing technology for low-cost solar energy conversion and a crucial element of these is the dye, responsible for light harvesting and control of interfacial electron-transfer processes.[1] A number of examples of dye exist in the literature which link a ruthenium polypyridyl complex to another platinum group metal complex such as Ru (II), Os (II), Re (I) or Rh (III) via a bridging ligand.[2-6] These systems are often referred to as heterosupramolecular triads when adsorbed on the surface of TiO2 as the semiconductor becomes an active component in the system. A number of problems can arise with these types of sensitisers, for example if a flexible linker, e.g. bis-pyridylethane, is used to couple the two complexes it can be hard to control the orientation of the whole dye. This may lead to the resultant dye cation hole being closer to the surface than desired, and hence the long-lived charge-separated state is not achieved. In addition the size of these dyes may be much larger than that of a mononuclear complex and can lead to poor pore filling on the TiO2 and lower dye coverage, leading to a lower efficiency cell.[7] Despite these issues, efficient charge-separation has been achieved with polynuclear complexes and a long-lived state on the millisecond timescale has been observed for a trinuclear ruthenium complex.[8]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the search for light-addressable nanosized compounds we have synthesized 10 dinuclear homometallic trisbipyridyl complexes of linear structure with the general formula [M(bpy)3-BL-M(bpy)3]4+ [M = Ru(II) or Os(II); BL = polyphenylenes (2, 3, 4, or 5 units) or indenofluorene; bpy = 2,2′-bipyridine]. By using a "chemistry on the complex" approach, different sizes of rodlike systems have been obtained with a length of 19.8 and 32.5 Å for the shortest and longest complex, respectively. For one of the ruthenium precursors, [RUbpy-ph2-Si(CH3) 3][PF6]2, single crystals were obtained by recrystallization from methanol. Their photophysical and electrochemical properties are reported. All the compounds are luminescent both at room and low temperature with long excited-state lifetimes due to an extended delocalization. Nanosecond transient absorption showed that the lowest excited state involves the chelating unit attached to the bridging ligand. Electrochemical data indicated that the first reduction is at a slightly more positive potential than for the reference complexes [M(bpy)3]2+ (M = Ru, Os). This result confirms that the best acceptor is the bipyridine moiety connected to the conjugated spacers. The role of the tilt angle between the phenylene units, in the two series of complexes, for the ground and excited states is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4-fluorophenoxy)acetic acid, (3-chloro-2-methylphenoxy)acetic acid and the herbicidally active (2,4-dichlorophen­oxy)acetic acid (2,4-D), namely poly[[5-(4-fluorophenoxy)acetato][4-(4-fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[5-(3-chloro-2-methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[7-(2,4-di­chlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O-atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O'-chelate inter­action. Polymeric extension is achieved through a number of carboxylate O-atom bridges, with a minimum CsCs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs+ cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O-atom bonding interactions, giving a CsCs separation of 4.2473 (3) Å. The water mol­ecule forms intralayer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis[(2,4-dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O-HO hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two-dimensional coordination polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new dearomatized porphyrinoid, 5,10-diiminoporphodimethene (5,10-DIPD), has been prepared by palladium-catalyzed hydrazination of 5,10-dibromo-15,20-bis(3,5-di-tert-butylphenyl)porphyrin and its nickel(II) complex, by using ethyl and 4-methoxybenzyl carbazates. The oxidative dearomatization of the porphyrin ring occurs in high yield. Further oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone forms the corresponding 5,10-bis(azocarboxylates), thereby restoring the porphyrin aromaticity. The UV/visible spectra of the NiII DIPDs exhibit remarkable redshifts of the lowest-energy bands to 780 nm, and differential pulse voltammetry reveals a contracted electrochemical HOMO–LUMO gap of 1.44 V. Density functional theory (DFT) was used to calculate the optimized geometries and frontier molecular orbitals of model 5,10-DIPD Ni7c and 5,10-bis(azocarboxylate) Ni8c. The conformations of the carbamate groups and the configurations of the CNZ unit were considered in conjunction with the NOESY spectra, to generate the global minimum geometry and two other structures with slightly higher energies. In the absence of solution data regarding conformations, ten possible local minimum conformations were considered for Ni8c. Partition of the porphyrin macrocycle into tri- and monopyrrole fragments in Ni7c and the inclusion of terminal conjugating functional groups generate unique frontier molecular orbital distributions and a HOMO–LUMO transition with a strong element of charge transfer from the monopyrrole ring. Time-dependent DFT calculations were performed for the three lowest-energy structures of Ni7c and Ni8c, and weighting according to their energies allowed the prediction of the electronic spectra. The calculations reproduce the lower-energy regions of the spectra and the overall forms of the spectra with high accuracy, but agreement is not as good in the Soret region below 450 nm.