934 resultados para PROTEASE-ACTIVATED-RECEPTOR-2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GLP-1 protects β-cells against apoptosis by still incompletely understood mechanisms. In a recent study, we searched for novel anti-apoptotic pathways by performing comparative transcriptomic analysis of islets from Gipr-/-;Glp-1r-/- mice, which show increased susceptibility to cytokine-induced apoptosis. We observed a strong reduction in IGF-1R expression in the knockout islets suggesting a link between the gluco-incretin and IGF-1R signaling pathways. Using MIN6 and primary islet cells, we demonstrated that GLP-1 strongly stimulates IGF-1R expression and that activation of the IGF-1R/Akt signaling pathway required active secretion of IGF-2 by the β-cells. We showed that inactivation of the IGF-1 receptor gene in β-cells or preventing its up-regulation by GLP-1, as well as suppressing IGF-2 expression or action, blocked the protective effect of GLP-1 against cytokine-induced apoptosis. Thus, an IGF-2/IGF-1 receptor autocrine loop operates in β-cells and GLP-1 increases its activity by enhancing IGF-1R expression and by stimulating IGF-2 secretion. This mechanism is required for GLP-1 to protect β-cells against apoptosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE Zinc-α(2) glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR). METHODS mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed. RESULTS The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL. CONCLUSIONS ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Via a transcription factor, Foxp3, immunoregulatory CD4(+)CD25(+) T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2-IL-2 mAb complexes for a short period of 3 d induces a marked (>10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1-2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2-IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex-incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exercise is known to reduce cardiovascular risk. However, its role on atherosclerotic plaque stabilization is unknown. Apolipoprotein E(-/-) mice with vulnerable (2-kidney, 1-clip: angiotensin [Ang] II-dependent hypertension model) or stable atherosclerotic plaques (1-kidney, 1-clip: Ang II-independent hypertension model and normotensive shams) were used for experiments. Mice swam regularly for 5 weeks and were compared with sedentary controls. Exercised 2-kidney, 1-clip mice developed significantly more stable plaques (thinner fibrous cap, decreased media degeneration, layering, macrophage content, and increased smooth muscle cells) than sedentary controls. Exercise did not affect blood pressure. Conversely, swimming significantly reduced aortic Ang II type 1 receptor mRNA levels, whereas Ang II type 2 receptor expression remained unaffected. Sympathetic tone also significantly diminished in exercised 2-kidney, 1-clip mice compared with sedentary ones; renin and aldosterone levels tended to increase. Ang II type 1 downregulation was not accompanied by improved endothelial function, and no difference in balance among T-helper 1, T-helper 2, and T regulatory cells was observed between sedentary and exercised mice. These results show for the first time, in a mouse model of Ang II-mediated vulnerable plaques, that swimming prevents atherosclerosis progression and plaque vulnerability. This benefit is likely mediated by downregulating aortic Ang II type 1 receptor expression independent from any hemodynamic change. Ang II type 1 downregulation may protect the vessel wall from the Ang II proatherogenic effects. Moreover, data presented herein further emphasize the pivotal and blood pressure-independent role of Ang II in atherogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: EMD 521873 (Selectikine or NHS-IL2LT) is a fusion protein consisting of modified human IL-2 which binds specifically to the high-affinity IL-2 receptor, and an antibody specific for both single- and double-stranded DNA, designed to facilitate the enrichment of IL-2 in tumor tissue. METHODS: An extensive analysis of pharmacodynamic (PD) markers associated with target modulation was assessed during a first-in-human phase I dose-escalation trial of Selectikine. RESULTS: Thirty-nine patients with metastatic or locally advanced tumors refractory to standard treatments were treated with increasing doses of Selectikine, and nine further patients received additional cyclophosphamide. PD analysis, assessed during the first two treatment cycles, revealed strong activation of both CD4+ and CD8+ T-cells and only weak NK cell activation. No dose response was observed. As expected, Treg cells responded actively to Selectikine but remained at lower frequency than effector CD4+ T-cells. Interestingly, patient survival correlated positively with both high lymphocyte counts and low levels of activated CD8+ T-cells at baseline, the latter of which was associated with enhanced T-cell responses to the treatment. CONCLUSIONS: The results confirm the selectivity of Selectikine with predominant T-cell and low NK cell activation, supporting follow-up studies assessing the clinical efficacy of Selectikine for cancer patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expression of interleukin 7 receptor alpha(high) (IL-7Ralpha(high)) discriminates between activated CD25(+)CD45RO(+)CD4(+) T cells [IL-7Ralpha(high) and forkhead box P3-negative (FoxP3(-))] and regulatory T cells (IL-7Ralpha(low) and FoxP3(+)). The IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population has been shown to be expanded in the blood and tissues of patients after kidney transplantation and to contain alloreactive T cells (activated T cells). In the present study, we analyzed the distribution of IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cells in the blood of 53 patients after liver transplantation. The IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population was significantly expanded (P &lt; 0.0001) in stable transplant recipients versus healthy donors. However, the magnitude of the expansion was significantly higher (P &lt; 0.0001) in liver transplant recipients with no hepatitis C virus (HCV) infection in comparison with those with a preexisting HCV infection. Interestingly, effective suppression of HCV viremia after antiviral therapy was associated with an increase in the IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population to levels comparable to those of liver transplant recipients not infected with HCV. The present results indicate that (1) the IL-7Ralpha(high)CD25(+)CD45RO(+)CD4(+)FoxP3(-) T cell population is expanded after liver transplantation, (2) it is a valuable immunological marker for monitoring activated and potential alloreactive CD4 T cells in liver transplantation, and (3) a preexisting HCV infection negatively influences the expansion of this population in liver transplant recipients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Schizophrenia is a devastating mental disorder that has a largeimpact on the quality of life for those who are afflicted and isvery costly for families and society.[1] Although the etiology ofschizophrenia is still unknown and no cure has yet beenfound, it is treatable, and pharmacological therapy often producessatisfactory results. Among the various antipsychoticdrugs in use, clozapine is widely recognized as one ofthemost clinically effective agents, even if it elicits significant sideeffects such as metabolic disorders and agranulocytosis. Clozapineand the closely related compound olanzapine are goodexamples ofdrug s with a complex multi-receptor profile ;[2]they have affinities toward serotonin, dopamine, a adrenergic,muscarinic, and histamine receptors, among others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. We compared the changes in binding energy generated by two mutations that shift in divergent directions the constitutive activity of the human beta(2) adrenergic receptor (beta(2)AR). 2. A constitutively activating mutant (CAM) and the double alanine replacement (AA mutant) of catechol-binding serines (S204A, S207A) in helix 5 were stably expressed in CHO cell lines, and used to measure the binding affinities of more than 40 adrenergic ligands. Moreover, the efficacy of the same group of compounds was determined as intrinsic activity for maximal adenylyl cyclase stimulation in wild-type beta(2)AR. 3. Although the two mutations had opposite effects on ligand affinity, the extents of change were in both cases largely correlated with the degree of ligand efficacy. This was particularly evident if the extra loss of binding energy due to hydrogen bond deletion in the AA mutant was taken into account. Thus the data demonstrate that there is an overall linkage between the configuration of the binding pocket and the intrinsic equilibrium between active and inactive receptor forms. 4. We also found that AA mutation-induced affinity changes for catecholamine congeners gradually lacking ethanolamine substituents were linearly correlated to the loss of affinity that such modifications of the ligand cause for wild-type receptor. This indicates that the strength of bonds between catechol ring and helix 5 is critically dependent on the rest of interactions of the beta-ethanolamine tail with other residues of the beta(2)-AR binding pocket.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1 proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro, and a reduced capacity to promote NF-κB activation and transcription of the growth-promoting cytokine interleukin-2 in antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fas is a cell surface death receptor that signals apoptosis. Several proteins have been identified that bind to the cytoplasmic death domain of Fas. Fas-associated death domain (FADD), which couples Fas to procaspase-8, and Daxx, which couples Fas to the Jun NH(2)-terminal kinase pathway, bind independently to the Fas death domain. We have identified a 130-kD kinase designated Fas-interacting serine/threonine kinase/homeodomain-interacting protein kinase (FIST/HIPK3) as a novel Fas-interacting protein. Binding to Fas is mediated by a conserved sequence in the COOH terminus of the protein. FIST/HIPK3 is widely expressed in mammalian tissues and is localized both in the nucleus and in the cytoplasm. In transfected cell lines, FIST/HIPK3 causes FADD phosphorylation, thereby promoting FIST/HIPK3-FADD-Fas interaction. Although Fas ligand-induced activation of Jun NH(2)-terminal kinase is impaired by overexpressed active FIST/HIPK3, cell death is not affected. These results suggest that Fas-associated FIST/HIPK3 modulates one of the two major signaling pathways of Fas.