966 resultados para PRECISION
Resumo:
This note has as objective to present the advantages of the use of syringe-type pumps for the feeding of liquid reactants, together with mass flow controllers for gases, instead of the saturators, as it is generally accomplished. Among the advantages, the system with syringe pumps presents a greater flexibility in flow control as well as in composition compared with the system that uses saturator. In addition, the flow of the liquid reactants is known with precision in the syringe pump system.
Resumo:
In this work two procedures were proposed for analytical curves construction using a single standard solution employing a flow injection system with solid phase spectrophotometric detection (FI-SPS). A flow cell contends the chromogenic reagent 1-(2-tiazolylazo)-2-naphtol was positioned on the optical path. The first procedure was based on controlled concentration of analyte on solid phase and the relations between absorbance and the total volume of injected allowed the calculation of analyte concentration. The second procedure was developed employing controlled dispersion/retention in flow system where analyte concentration was obtained by exploiting the relation between transient signals of samples and single standard solution at equivalent reading time. The procedures were successfully applied for zinc determination in synthetic solutions with good precision and accuracy at 95% confidence level.
Resumo:
The work describes a new procedure for cetylpyridinium chloride determination in oral disinfectants, based on a flow-injection system with potentiometric detection. The determination was based on the measurement of picrate concentration decrease as result of ion-pair reaction with the analyte present in the injected sample. In the optimised set-up the sample injection volume was kept at 400 µL and merged downstream with the reagent solution containing 1,0 x10-5 mol/L of picrate adjusted to pH 5.0 with citrate/citric acid buffer. The flow rate was fixed at 8 mL/min and the reactor length at 40 cm. The proposed procedure enables the determination of cetylpyridinium in the analytical range of 5,0x10-6 - 7,5x10-5 mol/L at a sampling rate of 60/h. The results for real samples had a precision better than 3% and were comparable to the labelled values.
Resumo:
In the present work structural, magnetic and transport properties of InGaAs quantum wells (QW) prepared by MBE with an remote Mn layer are investigated. By means of high-resolution X-ray diffractometry the structure of the samples is analyzed. It is shown that Mn ions penetrate into the QW. Influence of the thickness of GaAs spacer and annealing at 286 ºС on the properties of the system is shown. It is shown that annealing of the samples led to Mn activation and narrowing of the Mn layer. Substantial role of 2D holes in ferromagnetic ordering in Mn layer is shown. Evidence for that is observation of maximum at 25 – 55 K on the resistivity temperature dependence. Position of maximum, which is used for quantitative assessment of the Curie temperature, correlates with calculations of the Curie temperature for structures with indirect interaction via 2D holes’ channel. Dependence of the Curie temperature on the spacer thickness shows, that creation of applicable spintronic devices needs high-precision equipment to manufacture extra fine structures. The magnetotransport measurements show that charge carrier mobility is very low. This leads to deficiency of the anomalous Hall effect. At the same time, magnetic field dependences of the magnetization at different temperatures demonstrate that systems are ferromagnetically ordered. These facts, most probably, give evidence of presence of the ferromagnetic MnAs clusters.
Resumo:
A method is presented for the choice of spectral regions when absorption measurements are coupled to chemometric tools to perform quantitative analyses. The method is based on the spectral distribution of the relative standard deviation of concentration (s c/c). It has been applied to the development of PLS-FTNIR calibration models for the determination of density and MON of gasoline, and ethanol content and density of ethanol fuel. The new method was also compared with the correlation (R²) method and has proved to generate PLS calibration models that present better accuracy and precision than those based on R².
Resumo:
The application of analytical procedures based on multivariate calibration models has been limited in several areas due to requirements of validation and certification of the model. Procedures for validation are presented based on the determination of figures of merit, such as precision (mean, repeatability, intermediate), accuracy, sensitivity, analytical sensitivity, selectivity, signal-to-noise ratio and confidence intervals for PLS models. An example is discussed of a model for polymorphic purity control of carbamazepine by NIR diffuse reflectance spectroscopy. The results show that multivariate calibration models can be validated to fulfill the requirements imposed by industry and standardization agencies.
Resumo:
Two high performance liquid chromatography (HPLC) methods for the quantitative determination of indinavir sulfate were tested, validated and statistically compared. Assays were carried out using as mobile phases mixtures of dibutylammonium phosphate buffer pH 6.5 and acetonitrile (55:45) at 1 mL/min or citrate buffer pH 5 and acetonitrile (60:40) at 1 mL/min, an octylsilane column (RP-8) and a UV spectrophotometric detector at 260 nm. Both methods showed good sensitivity, linearity, precision and accuracy. The statistical analysis using the t-student test for the determination of indinavir sulfate raw material and capsules indicated no statistically significant difference between the two methods.
Resumo:
A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.
Resumo:
This work presents an alternative method for determination of the herbicides tebuthiuron and hexazinone in ground water. The extraction was made with dichloromethane and the analyses by high performance liquid chromatography (HPLC), using reversed-phase column, C-18, mobile phase methanol/water 50:50, v/v, detection and quantification at 247 nm. The following validation parameters were obtained: limit of detection of method 0.02 and 0.03 µg L-1, limit of quantification of method 0.07 and 0.09 µg L-1; linear range limit of quantification of instrument - 300 µg L-1 (r² > 0.998); recoveries from 90.3 to 108.2% and 90.3 to 101.6%; intermediary precision (%RSD) < 8 and < 6%, for hexazinone and tebuthiuron, respectively. The method showed to be efficient and reliable for determination of the herbicides in ground water.
Resumo:
MOTOR IMPAIRMENTS ARE COMMON AFTER STROKE but efficacious therapies for these dysfunctions are scarce. Extending an earlier study on the effects of music-supported training (MST), behavioral indices of motor function were obtained before and after a series of training sessions to assess whether this new treatment leads to improved motor functions. Furthermore, music-supported training was contrasted to functional motor training according to the principles of constraint-induced therapy (CIT). In addition to conventional physiotherapy, 32 stroke patients with moderately impaired motor function and no previous musical experience received 15 sessions of MST over a period of three weeks, using a manualized, step-bystep approach. A control group consisting of 15 patients received 15 sessions of CIT in addition to conventional physiotherapy. A third group of 30 patients received exclusively conventional physiotherapy and served as a control group for the other three groups. Fine as well as gross motor skills were trained by using either a MIDI-piano or electronic drum pads programmed to emit piano tones. Motor functions were assessed by an extensive test battery. MST yielded significant improvement in fine as well as gross motor skills with respect to speed, precision, and smoothness of movements. These improvements were greater than after CIT or conventional physiotherapy. In conclusion, with equal treatment intensity, MST leads to more pronounced improvements of motor functions after stroke than CIT.
Resumo:
The use of an internal standard (IS) in ET AAS can be considered a new trend after the commercial introduction of a simultaneous spectrometer. The evaluation of experimental data to choose the most appropriate IS can be done by comparing correlation graphs. They were used to verify the resemblance among the simultaneous measurements obtained for the analyte(s) and the IS by inductively coupled plasma optical emission spectrometry (ICPOES). The judicious selection of IS by using correlation graphs for determinations by ET AAS can be exploited to improve the precision and accuracy of the analytical results. Therefore, a new approach for studying the use of IS in ET AAS is presented.
Resumo:
A new solid phase microextraction (SPME) system, known as in-tube SPME, was recently developed using an open tubular fused-silica capilary column, instead of an SPME fiber, as the SPME device. On-line in-tube SPME is usually used in combination with high performance liquid chromatography. Drugs in biological samples are directly extracted and concentrated in the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and then directly transferred to the liquid chromatographic column. In-tube SPME is suitable for automation. Automated sample handling procedures not only shorten the total analysis time, but also usually provide better accuracy and precision relative to manual techniques. In-tube SPME has been demonstrated to be a very effective and highly sensitive technique to determine drugs in biological samples for various purposes such as therapeutic drug monitoring, clinical toxicology, bioavailability and pharmacokinetics.
Resumo:
A boron-doped diamond electrode is used for determination of Mn(II) in atmospheric particulate matter by square wave cathodic stripping voltammetry. The analytical curve was linear for Mn(II) concentrations between 5.0 and 37.5 µg L-1, with quantification limit of 3.6 µg L-1. The precision was evaluated by the relative standard deviation, with values between 5.1% and 9.3%. The electrode is free of adsorption, minimizing memory effects. Samples collected in the workplace atmosphere of a foundry had Mn(II) concentrations between 0.4 and 4 µg m-3. No significant differences were observed between the proposed method and inductively coupled plasma optical emission spectroscopy.
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications
Resumo:
Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3) and the detection limit (9 mg kg-1 NH4+-N) are better than those of published procedures.