990 resultados para PRECISE DETERMINATION
Resumo:
Two M(n+)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol systems for the simultaneous determination of the valence states of Cr and Fe using factor analysis were studied. (1) At pH 4.0, Cr(III) and Cr(VI) react with the reagent to form stable complexes and a slight difference in the wavelengths of maximum absorption (lambda(max.)) between the two complexes is observed when the sodium lauryl sulfate, which also acts as a solubilizing and sensitizing agent, is added, viz., 590 nm for Cr(III) and 593 nm for Cr(VI) complexes. (2) In the presence of ethanol, both Fe(II) and Fe(III) form 1:2 complexes with the reagent at pH 2.5-3.5 and the lambda(max.) of the Fe(II) and Fe(III) complexes is at 557 and 592 nm, respectively. In the target transformation factor analysis, the K coefficients calculated from the standard mixtures by classical least-squares analysis and a non-zero intercept added to each wavelength are used as the target vector instead of the pure component standards; this can decrease the analysis errors introduced by the interaction between the two species and by deviations from Beer's law.
Resumo:
The rapid scan spectrometer was used to determine the heterogeneous electron transfer rate parameters for the oxidation of Biliverdin in DMF by single potential step thin layer spectroelectrochemical techniques and yielded an average formal heterogeneous electron transfer rate constant K(s, h)0' = 2.45 (+/-0.12) x 10(-4) cm s-1, electrochemical transfer coefficient alpha = 0.694+/-0.008. The oxidation process of Biliverdin was also studied and the formal potential E0 = 0.637 V (vs. Ag/AgCl) was obtained.
Resumo:
The possibility of determining the rate constant of a catalytic reaction using a parallel incident spectroelectrochemical cell was investigated in this work. Various spectroelectrochemical techniques were examined, including single-potential-step chronoabsorptometry, single-potential-step open-circuit relaxation chronoabsorptometry and double-potential-step chronoabsorptometry. The values determined for the kinetics of the ferrocyanide-ascorbic acid system are in agreement with the reported values. The parallel incident method is much more sensitive than the normal transmission method and can be applied to systems which have smaller molar absorptivities, larger rate constants or lower concentrations.
Resumo:
Langmuir-Blodgett (LB) films of (p-carboxyphenoxy)-tri(2,4-di-tert-pentyl phenoxy)phthalocyanine copper(II) (asyCuPc) are prepared; the associated forms of the compound in chloroform solution and the particular orientation of asyCuPc molecular macrocycles in LB films is determined by polarized UV-VIS.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
The values of k and alpha in the Mark-Houwink equation have been determined for chitosans with different degrees of deacetylation (DD) (69, 84, 91 and 100% respectively), in 0.2 M CH3COOH/0.1 M CH3COONa aqueous solution at 30-degrees-C by the light scattering method. It was shown that the values of alpha-decreased from 1.12 to 0.81 and the values of k increased from 0.104 x 10(-3) to 16.80 x 10(-3) ml/g, when the DD varied from 69 to 100%. This is due to a reduction of rigidity of the molecular chain and an increase of the electrostatic repulsion force of the ionic groups along the polyelectrolyte chain in chitosan solution, when the DD of chitosan increases gradually.
Resumo:
LnCL3 reacts with NaC5H5 and K2C8H8 to yield the complexes (eta-5-C5H5)Ln(eta-8-C8H8).nTHF (Ln = Pr, Nd, n = 2; Ln = Gd, n = 1) and LnCl3 reacts with KC9H7 and K2C8H8 to yield the complexes (eta-5-C9H7)Ln(eta-8-C8H8).2THF (Ln = Pr, Nd; eta-5-C9H7 = indenyl); crystallography reveals (eta-5-C5H5)Pr(eta-8-C8H8).2THF and (eta-5-C9H7)Pr(eta-8-C8H8).2THF not to possess the parallel ring sandwich structure.
Resumo:
The at constants of catalytic reaction of ferrocyanide ascorbic acid and ferro cyanide histidine system were determined by transmitted spectroelectrochemistry using a group of cyclindrical microelectrodes, It is the first time to find that the reaction can still be considered as the pseudo first order reaction when tilt concentration of ascorbic acid or histidine is close to and even slightly lower than the concentration of ferrocyanide. The determined rate constants are in agreement with the reported values, A reasonable explanation was given,
Resumo:
A method of analysis of high purity yttrium oxide with ICP-AES was described with emphasis on the study of Y_2O_3 matrix effects. The results showed that the line intensities of ana]ytes decreased with the increase of Y_2O_3 concentration in solution because of following factors. (1) The presence of matrix resulted in the decrease of the amount of analytes reaching ICP. (2) Matrix Y_2O_3 entering the plasma decreased the excitation temperature of the plasma and depressed the ionization of analytes in the pl...
Resumo:
The rate constant of very fast chemical reaction generally can be measured by electrochemical methods, but can not by the thin layer electrochemical methods because of the influence of diffusion effect. Long optical path length thin layer cell (LOPTLC) with large ratio of electrode area to solution volume can be used to monitor the fist chemical reaction in situ with high sensitivity and accuracy. It enable the adsorption spectra to be measured without the influence of diffusion effect. In the present paper, a fast chemical reaction of Alizarin Red S (ARS) with its oxidative state has been studied. The reaction equilibrium constant (K) under different potentials can be determined by single step potential-absorption spectra in LOPTLC. An equilibrium constant of 7.94 x 10(5) l.mol(-1) for the chemical reaction has been obtained from the plot of lgK vs. (E - E-1(0)'). Rate constant (k) under different potentials can be measured by single step potential-chronoabsorptiometry. A rate constant of 426.6 l.mol(-1).s(-1) for the chemical reaction has been obtained from the plot of lgK vs. (E - E-1(0)') with (E - E-1(0)') = 0.