985 resultados para POLAR MONOMERS
Resumo:
Paged continuously: XII, 440 p.; XII, [441]-911 p.
Resumo:
Two of the maps are in pocket.
Resumo:
Mode of access: Internet.
Resumo:
Official publication no. 307j.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Detailed chemical analysis of the solid phase fermentation of an Australian Penicillium citrinum isolate has returned the known compounds citrinin (1), phenol A acid (6), dihydrocitrinone (7) and dihydrocitrinin (8), together with a novel cytotoxic dimer, dicitrinin A (5). Dicitrinin A (5) was determined to be a dimerised artefact of the major co-metabolite citrinin, and its structure solved by spectroscopic analysis and chemical modi. cation. Analysis of the products encountered during the controlled decomposition of citrinin led to the discovery of additional citrinin dimers and delineated a plausible mechanistic pathway linking all monomeric and dimeric citrinin degradation products.
Resumo:
We show that the quantum decoherence of Forster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria that are necessary for coherent quantum oscillations of excitations between the chromophores. Experimental tests of our results should be possible with flourescent resonant energy transfer (FRET) spectroscopy. Although we focus on the case of protein-pigment complexes our results are also relevant to quantum dots and organic molecules in a dielectric medium. (c) 2006 Elsevier B.V. All rights reserved.
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.