919 resultados para PLATINUM MONOLAYER
Resumo:
This article describes a new design for a paper-based electrochemical system for flow injection analysis. Capillary wicking facilitates a gravity-driven flow of buffer solution continuously through paper and nitrocellulose, from a buffer reservoir at one end of the device to a sink at the other. A difference in height between the reservoir and the sink leads to a continuous and constant flow. The nitrocellulose lies horizontally on a working electrode, which consists of a thin platinum layer deposited on a solid support. The counter and reference electrodes are strategically positioned upstream in the buffer reservoir. A simple pipetting device was developed for reliable application of (sub)microliter volumes of sample without the need of commercial micropipets; this device did not damage the nitrocellulose membrane. Demonstration of the system for the determination of the concentration of glucose in urine resulted in a noninvasive, quantitative assay that could be used for diagnosis and monitoring of diabetes. This method does not require disposable test strips, with enzyme and electrodes, that are thrown away after each measurement Because of its low cost, this system could be used in medical environments that are resource-limited.
Resumo:
In this paper we report the electrosynthesis of PVA-protected PtCo films (PVA = poly(vinylalcohol)) and their activities towards the oxygen reduction reaction (ORR). PtCo electrodeposits were potentiostatically obtained in the presence and absence of PVA at distinct potentials. The film morphology and composition were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), which revealed that the use of PVA in the electrodeposition of PtCo films was decisive to achieve better film composition control. Cyclic voltammetry for PVA-protected PtCo films showed that the electrochemical surface area is dependent on the electrodeposition potentials and suggested different adsorption strengths of oxygen-containing species. Films produced in the presence of PVA presented the following activity order towards ORR as a function of the electrodeposition potential (vs. Ag/AgCl): -0.9 V> -0.8 V> -1.0 V> -0.7 V. In contrast, PtCo films electrodeposited in the absence of PVA displayed very similar activities regardless of the electrodeposition potential. The simplicity of the electrodeposition method combined with its effectiveness enabled the production of "model electrodes" for investigating the fundamental aspects of the reactions taking place in the fuel cell cathodes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: In many types of cancer, prostaglandin E-2 (PGE(2)) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE(1), PGE(2) and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods: T98G human glioma cells were treated with IBP, PGE(1) or PGE(2) at varying concentrations for 24-72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results: A significant decrease was seen in cell number (54%) in the presence of 50 mu M IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE(1) or PGE(2) caused significant increases in cell number (37% PGE(1) and 45% PGE(2)). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE(1) (62%) and to a greater extent by PGE(2) (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE(1) and 44% PGE(2)) and the transwell migration assay (28% PGE(1) and 68% PGE(2)). Conclusions: The present study demonstrated that treatments which alter PGE(1) and PGE(2) metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.
Resumo:
This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.