972 resultados para PHARMACOLOGICAL CHAPERONES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambulatory blood pressure monitoring (ABPM) is being used increasingly in both clinical practice and hypertension research. Although there are many guidelines that emphasize the indications for ABPM, there is no comprehensive guideline dealing with all aspects of the technique. It was agreed at a consensus meeting on ABPM in Milan in 2011 that the 34 attendees should prepare a comprehensive position paper on the scientific evidence for ABPM.This position paper considers the historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost-effectiveness of the technique. It examines the need for selecting an appropriate device, the accuracy of devices, the additional information and indices that ABPM devices may provide, and the software requirements.At a practical level, the paper details the requirements for using ABPM in clinical practice, editing considerations, the number of measurements required, and the circumstances, such as obesity and arrhythmias, when particular care needs to be taken when using ABPM.The clinical indications for ABPM, among which white-coat phenomena, masked hypertension, and nocturnal hypertension appear to be prominent, are outlined in detail along with special considerations that apply in certain clinical circumstances, such as childhood, the elderly and pregnancy, and in cardiovascular illness, examples being stroke and chronic renal disease, and the place of home measurement of blood pressure in relation to ABPM is appraised.The role of ABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined and finally the implementation of ABPM in practice is considered in relation to the issue of reimbursement in different countries, the provision of the technique by primary care practices, hospital clinics and pharmacies, and the growing role of registries of ABPM in many countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Therapeutic hypothermia and pharmacological sedation may influence outcome prediction after cardiac arrest. The use of a multimodal approach, including clinical examination, electroencephalography, somatosensory-evoked potentials, and serum neuron-specific enolase, is recommended; however, no study examined the comparative performance of these predictors or addressed their optimal combination. DESIGN: Prospective cohort study. SETTING: Adult ICU of an academic hospital. PATIENTS: One hundred thirty-four consecutive adults treated with therapeutic hypothermia after cardiac arrest. MEASUREMENTS AND MAIN RESULTS: Variables related to the cardiac arrest (cardiac rhythm, time to return of spontaneous circulation), clinical examination (brainstem reflexes and myoclonus), electroencephalography reactivity during therapeutic hypothermia, somatosensory-evoked potentials, and serum neuron-specific enolase. Models to predict clinical outcome at 3 months (assessed using the Cerebral Performance Categories: 5 = death; 3-5 = poor recovery) were evaluated using ordinal logistic regressions and receiving operator characteristic curves. Seventy-two patients (54%) had a poor outcome (of whom, 62 died), and 62 had a good outcome. Multivariable ordinal logistic regression identified absence of electroencephalography reactivity (p < 0.001), incomplete recovery of brainstem reflexes in normothermia (p = 0.013), and neuron-specific enolase higher than 33 μg/L (p = 0.029), but not somatosensory-evoked potentials, as independent predictors of poor outcome. The combination of clinical examination, electroencephalography reactivity, and neuron-specific enolase yielded the best predictive performance (receiving operator characteristic areas: 0.89 for mortality and 0.88 for poor outcome), with 100% positive predictive value. Addition of somatosensory-evoked potentials to this model did not improve prognostic accuracy. CONCLUSIONS: Combination of clinical examination, electroencephalography reactivity, and serum neuron-specific enolase offers the best outcome predictive performance for prognostication of early postanoxic coma, whereas somatosensory-evoked potentials do not add any complementary information. Although prognostication of poor outcome seems excellent, future studies are needed to further improve prediction of good prognosis, which still remains inaccurate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro studies have shown that stimulation of alpha1-adrenoceptors (ARs) directly induces proliferation, hypertrophy, and migration of arterial smooth muscle cells and adventitial fibroblasts. In vivo studies confirmed these findings and showed that catecholamine trophic activity becomes excessive after experimental balloon injury and contributes to neointimal growth, adventitial thickening, and lumen loss. However, past studies have been limited by selectivity of pharmacological agents. The aim of this study, in which mice devoid of norepinephrine and epinephrine synthesis [dopamine beta-hydroxylase (DBH-/-)] or deficient in alpha1-AR subtypes expressed in murine carotid (alpha1B-AR-/- and alpha1D-AR-/-) were used, was to test the hypothesis that catecholamines contribute to wall hypertrophy after injury. At 3 wk after injury of wild-type mice, lumen area and carotid circumference increased significantly, and hypertrophy of media and adventitia was in excess of that needed to restore circumferential wall stress to normal. In DBH-/- and alpha1B-AR-/- mice, increases in lumen area, circumference, and hypertrophy of the media and adventitia were reduced by 50-91%, resulting in restoration of wall tension to nearly normal (DBH-/-) or normal (alpha1B-AR-/-). In contrast, in alpha1D-AR-/- mice, increases in lumen area, circumference, and wall hypertrophy were unaffected and wall thickening remained in excess of that required to return tension to normal. When examined 5 days after injury, proliferation and leukocyte infiltration were inhibited in DBH-/- mice. These studies suggest that the trophic effects of catecholamines are mediated primarily by alpha1B-ARs in mouse carotid and contribute to hypertrophic growth after vascular injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroleptics are frequently used in patients with advanced cancer. Most relevant and practical aspects of their use in supportive cancer care are reviewed, to assist the clinical oncologist and palliative care specialist when prescribing these drugs. This article reviews pharmacological properties, indications, such as delirium, nausea and vomiting, pain, anxiety and other symptoms, adverse effects, and drug interactions of neuroleptics and compares the profiles of different compounds. Special emphasis is put on the role of neuroleptics in the management of delirium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR) which is part of two functionally distinct complexes, mTORC1 and mTORC2, plays an important role in vascular endothelial cells. Indeed, the inhibition of mTOR with an allosteric inhibitor such as rapamycin reduces the growth of endothelial cell in vitro and inhibits angiogenesis in vivo. Recent studies have shown that blocking mTOR results in the activation of other prosurvival signals such as Akt or MAPK which counteract the growth inhibitory properties of mTOR inhibitors. However, little is known about the interactions between mTOR and MAPK in endothelial cells and their relevance to angiogenesis. Here we found that blocking mTOR with ATP-competitive inhibitors of mTOR or with rapamycin induced the activation of the mitogen-activated protein kinase (MAPK) in endothelial cells. Downregulation of mTORC1 but not mTORC2 had similar effects showing that the inhibition of mTORC1 is responsible for the activation of MAPK. Treatment of endothelial cells with mTOR inhibitors in combination with MAPK inhibitors reduced endothelial cell survival, proliferation, migration and tube formation more significantly than either inhibition alone. Similarly, in a tumor xenograft model, the anti-angiogenic efficacy of mTOR inhibitors was enhanced by the pharmacological blockade of MAPK. Taken together these results show that blocking mTORC1 in endothelial cells activates MAPK and that a combined inhibition of MAPK and mTOR has additive anti-angiogenic effects. They also provide a rationale to target both mTOR and MAPK simultaneously in anti-angiogenic treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No-reflow phenomenon is a consequence of percutaneous coronary intervention (PCI) which arises most of the time in the setting of myocardial infarction, but can be also the consequence of PCI in stable angina patients (rotatablator ablation technique or angioplasty in saphenous vein grafts). In this review, we summarize two ways of treating the no-reflow according to the current literature. First through the pharmacological approach where several compounds have been assessed like adenosine, nitroprusside, verapamil, nicorandil, dipyridamole, epinephrine or cyclosporine. Second through the mechanical approach where few strategies have been examined like intra-aortic balloon pumping or postconditioning. Finally, we provide an algorithm for treating a no-reflow even though no studies showed a beneficial effect in terms of clinical endpoints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Anhedonia is a challenging symptom of schizophrenia and remains largely recalcitrant to current pharmacological treatments. The goal of this exploratory pilot study was to assess if a cognitive-sensory intervention could improve anticipatory pleasure. DESIGN AND METHODS: Five participants meeting the Diagnostic and Statistical Manual of Mental Disorders (4th edition, Text Revision) criteria for schizophrenia, presenting severe anhedonia and stabilized on atypical antipsychotic medication, received between 10 hours and 25 hours of training. FINDINGS: Results show that the patients improved on the anticipatory scale of the Temporal Experience of Pleasure Scale. Daily activities of the patients were also increased. PRACTICE IMPLICATIONS: These preliminary data need to be interpreted with caution given the small sample of the study, but they offer promising paths to develop new interventions to alleviate anhedonia in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article summarizes the main therapeutic advances of 2010 in the field of neurology. It focuses on aspects that are likely to change the care of patients in clinical practice. Among these, we discuss the new oral treatments that have proved to be effective in multiple sclerosis, the results of two large studies comparing endarterectomy and stenting in carotid stenosis, novel therapeutic approaches for the treatment of non-motor symptoms in Parkinson's disease as well as the results of several pharmacological studies in the field of epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.