992 resultados para PERIODIC OPTICAL SUPERLATTICE
Resumo:
A full description of the 5.5-yr low excitation events in. Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e. g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in Fe II lambda 6455 and He I lambda 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).
Resumo:
NGC 6908, an S0 galaxy situated in the direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21-cm radio synthesis observations obtained with the Giant Metrewave Radio Telescope (GMRT) and optical images and spectroscopy obtained with the Gemini-North telescope of this pair of interacting galaxies. From the radio observations, we obtained the velocity field and the H I column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high-quality photometric images and 5 angstrom resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s(-1). The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some emission lines are superimposed on a broader absorption profile, which suggests that they were not formed in NGC 6908. Finally, the H I profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disc and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4 +/- 0.6) x 10(7) yr ago.
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
FS CMa type stars are a group of Galactic objects with the B[e] phenomenon. They exhibit strong emission-line spectra and infrared excesses, which are most likely due to recently formed circumstellar dust. The group content and identification criteria were described in the first two papers of the series. In this paper we report our spectroscopic and photometric observations of the optical counterpart of IRAS 00470+6429 obtained in 2003-2008. The optical spectrum is dominated by emission lines, most of which have P Cyg type profiles. We detected significant brightness variations, which may include a regular component, and variable spectral line profiles in both shape and position. The presence of a weak Li I 6708 angstrom line in the spectrum suggests that the object is most likely a binary system with a B2-B3 spectral-type primary companion of a luminosity log L/L(circle dot) = 3.9 +/- 0.3 and a late-type secondary companion. We estimate a distance toward the object to be 2.0 +/- 0.3 kpc from the Sun.
Resumo:
This paper presents an analysis of ground-based Aerosol Optical Depth (AOD) observations by the Aerosol Robotic Network (AERONET) in South America from 2001 to 2007 in comparison with the satellite AOD product of Moderate Resolution Imaging Spectroradiometer (MODIS), aboard TERRA and AQUA satellites. Data of 12 observation sites were used with primary interest in AERONET sites located in or downwind of areas with high biomass burning activity and with measurements available for the full time range. Fires cause the predominant carbonaceous aerosol emission signal during the dry season in South America and are therefore a special focus of this study. Interannual and seasonal behavior of the observed AOD at different sites were investigated, showing clear differences between purely fire and urban influenced sites. An intercomparison of AERONET and MODIS AOD annual correlations revealed that neither an interannual long-term trend may be observed nor that correlations differ significantly owing to different overpass times of TERRA and AQUA. Individual anisotropic representativity areas for each AERONET site were derived by correlating daily AOD of each site for all years with available individual MODIS AOD pixels gridded to 1 degrees x 1 degrees. Results showed that for many sites a good AOD correlation (R(2) > 0.5) persists for large, often strongly anisotropic, areas. The climatological areas of common regional aerosol regimes often extend over several hundreds of kilometers, sometimes far across national boundaries. As a practical application, these strongly inhomogeneous and anisotropic areas of influence are being implemented in the tropospheric aerosol data assimilation system of the Coupled Chemistry-Aerosol-Tracer Transport Model coupled to the Brazilian Regional Atmospheric Modeling System (CCATT-BRAMS) at the Brazilian National Institute for Space Research (INPE). This new information promises an improved exploitation of local site sampling and, thus, chemical weather forecast.
Resumo:
We report the use of optical coherence tomography (OCT) to detect and quantify demineralization process induced by S. mutans biofilm in third molars human teeth. Artificial lesions were induced by a S. mutans microbiological culture and the samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9, and 11days. The OCT system was implemented using a light source delivering an average power of 96 mu W in the sample arm, and spectral characteristics allowing 23 mu m of axial resolution. The images were produced with lateral scans step of 10 pan and analyzed individually. As a result of the evaluation of theses images, lesion depth was calculated as function of demineralization time. The depth of the lesion in the root dentine increased from 70 pm to 230,urn (corrected by the enamel refraction index, 1.62 @ 856 nm), depending of exposure time. The lesion depth in root dentine was correlated to demineralization time, showing that it follows a geometrical progression like a bacteria growth law. [GRAPHICS] Progression of lesion depth in root dentine as function of exposure time, showing that it follows a geometrical progression like a bacteria growth law(C) 2009 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The solubilization of lipid bilayers by detergents was studied with optical microscopy of giant unilamellar vesicles (GUVs) composed of palmitoyl oleoyl phoshatidylcholine (POPC). A solution of the detergents Triton X-100 (TX-100) and sodium dodecyl sulfate (SDS) was injected with a micropipette close to single GUVs. The solubilization process was observed with phase contrast and fluorescence microscopy and found to be dependent on the detergent nature. In the presence of TX-100, GUVs initially showed an increase in their surface area, due to insertion of TX-100 with rapid equilibration between the two leaflets of the bilayer. Then, above a solubility threshold, several holes opened, rendering the bilayer a lace fabric appearance, and the bilayer gradually vanished. On the other hand, injection of SDS caused initially an increase in the membrane spontaneous curvature, which is mainly associated with incorporation of SDS in the outer layer only. This created a stress in the membrane, which caused either opening of transient macropores with substantial decrease in vesicle size or complete vesicle bursting. In another experimental setup, the extent of solubilization/destruction of a collection of GUVs was measured as a function of either TX-100 or SDS concentration.
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Multilayers of PbTe quantum dots embedded in SiO2 were fabricated by alternate use of Pulsed Laser Deposition (PLD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy (HRTEM), Grazing-Incidence Small-Angle X-ray scattering (GISAXS) and X-ray Reflectometry (XRR) techniques. A preliminary analysis of the GISAXS spectra provided information about the multilayer periodicity and its relationship to the size of the deposited PbTe nanoparticles. Finally multilayers were fabricated inside a Fabry-Perot cavity. The device was characterized by means of Scanning Electron Microscopy (SEM). Transmittance measurements show the device functionality in the infrared region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present a new climatology of atmospheric aerosols (primarily pyrogenic and biogenic) for the Brazilian tropics on the basis of a high-quality data set of spectral aerosol optical depth and directional sky radiance measurements from Aerosol Robotic Network (AERONET) Cimel Sun-sky radiometers at more than 15 sites distributed across the Amazon basin and adjacent Cerrado region. This network is the only long-term project (with a record including observations from more than 11 years at some locations) ever to have provided ground-based remotely-sensed column aerosol properties for this critical region. Distinctive features of the Amazonian area aerosol are presented by partitioning the region into three aerosol regimes: southern Amazonian forest, Cerrado, and northern Amazonian forest. The monitoring sites generally include measurements from the interval 1999-2006, but some sites have measurement records that date back to the initial days of the AERONET program in 1993. Seasonal time series of aerosol optical depth (AOD), angstrom ngstrom exponent, and columnar-averaged microphysical properties of the aerosol derived from sky radiance inversion techniques (single-scattering albedo, volume size distribution, fine mode fraction of AOD, etc.) are described and contrasted for the defined regions. During the wet season, occurrences of mineral dust penetrating deep into the interior were observed.
Resumo:
[1] The retrieval of aerosol optical depth (Ta) over land by satellite remote sensing is still a challenge when a high spatial resolution is required. This study presents a tool that uses satellite measurements to dynamically identify the aerosol optical model that best represents the optical properties of the aerosol present in the atmosphere. We use aerosol critical reflectance to identify the single scattering albedo of the aerosol layer. Two case studies show that the Sao Paulo region can have different aerosol properties and demonstrates how the dynamic methodology works to identify those differences to obtain a better T a retrieval. The methodology assigned the high single scattering albedo aerosol model (pi o( lambda = 0.55) = 0.90) to the case where the aerosol source was dominated by biomass burning and the lower pi(o) model (pi(o) (lambda = 0.55) = 0.85) to the case where the local urban aerosol had the dominant influence on the region, as expected. The dynamic methodology was applied using cloud-free data from 2002 to 2005 in order to retrieve Ta with Moderate Resolution Imaging Spectroradiometer ( MODIS). These results were compared with collocated data measured by AERONET in Sao Paulo. The comparison shows better results when the dynamic methodology using two aerosol optical models is applied (slope 1.06 +/- 0.08 offset 0.01 +/- 0.02 r(2) 0.6) than when a single and fixed aerosol model is used (slope 1.48 +/- 0.11 and offset - 0.03 +/- 0.03 r(2) 0.6). In conclusion the dynamical methodology is shown to work well with two aerosol models. Further studies are necessary to evaluate the methodology in other regions and under different conditions.
Resumo:
We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.