931 resultados para Outdoor sculpture
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
A coverage algorithm is an algorithm that deploys a strategy as to how to cover all points in terms of a given area using some set of sensors. In the past decades a lot of research has gone into development of coverage algorithms. Initially, the focus was coverage of structured and semi-structured indoor areas, but with time and development of better sensors and introduction of GPS, the focus has turned to outdoor coverage. Due to the unstructured nature of an outdoor environment, covering an outdoor area with all its obstacles and simultaneously performing reliable localization is a difficult task. In this paper, two path planning algorithms suitable for solving outdoor coverage tasks are introduced. The algorithms take into account the kinematic constraints of an under-actuated car-like vehicle, minimize trajectory curvatures, and dynamically avoid detected obstacles in the vicinity, all in real-time. We demonstrate the performance of the coverage algorithm in the field by achieving 95% coverage using an autonomous tractor mower without the aid of any absolute localization system or constraints on the physical boundaries of the area.
Resumo:
This paper presents a new metric, which we call the lighting variance ratio, for quantifying descriptors in terms of their variance to illumination changes. In many applications it is desirable to have descriptors that are robust to changes in illumination, especially in outdoor environments. The lighting variance ratio is useful for comparing descriptors and determining if a descriptor is lighting invariant enough for a given environment. The metric is analysed across a number of datasets, cameras and descriptors. The results show that the upright SIFT descriptor is typically the most lighting invariant descriptor.
Resumo:
Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.
Resumo:
The processes of studio-based teaching in visual art are often still tied to traditional models of discrete disciplines and largely immersed in skill-based learning. These approaches to training artists are also tied to an individual model of art practice that is clearly defined by the boundaries of those disciplines. This paper will explain how the open studio program at QUT can be broadly understood as an action research model of learning that ‘plays’ with the post-medium, post-studio genealogies and zones of contemporary art. This emphasises developing conceptual, contextual and formal skills as essential for engaging with and practicing in the often-indeterminate spatio-temporal sites of studio teaching. It will explore how this approach looks to Sutton-Smith’s observations on the role of play and Vygotsky’s zone of proximal development in early childhood learning as a way to develop strategies for promoting creative learning environments that are collaborative and self sustainable. Social, cultural, political and philosophical dialogues are examined as they relate to art practice with the aim of forming the shared interests, aims, and ambitions of graduating students into self initiated collectives or ARIs.
Resumo:
Approaches to art-practice-as-research tend to draw a distinction between the processes of creative practice and scholarly reflection. According to this template, the two sites of activity – studio/desk, work/writing, body/mind – form the ‘correlative’ entity known as research. Creative research is said to be produced by the navigation of world and thought: spaces that exist in a continual state of tension with one another. Either we have the studio tethered to brute reality while the desk floats free as a site for the fluid cross-pollination of texts and concepts. Or alternatively, the studio is characterized by the amorphous, intuitive play of forms and ideas, while the desk represents its cartography, mapping and fixing its various fluidities. In either case, the research status of art practice is figured as a fundamentally riven space. However, the nascent philosophy of Speculative Realism proposes a different ontology – one in which the space of human activity comprises its own reality, independent of human perception. The challenge it poses to traditional metaphysics is to rethink the world as if it were a real space. When applied to practice-led research, this reconceptualization challenges the creative researcher to consider creative research as a contiguous space – a topology where thinking and making are not dichotomous points but inflections in an amorphous and dynamic field. Instead of being subject to the vertical tension between earth and air, a topology of practice emphasizes its encapsulated, undulating reality – an agentive ‘object’ formed according to properties of connectedness, movement and differentiation. Taking the central ideas of Quentin Meillassoux and Graham Harman as a point of departure, this paper will provide a speculative account of the interplay of spatialities that characterise the author’s studio practice. In so doing, the paper will model the innovative methodological potential produced by the analysis of topological dimensions of the studio and the way they can be said to move beyond the ‘geo-critical’ divide.
Resumo:
Photographic documentation of sculpture produces significant consequences for the way in which sculptural space is conceived. When viewed as discrete mediums the interaction of the photograph and its sculptural subject is always framed by notions of loss. However, when taken as a composite system, the sculpture-photograph proposes a new ontology of space. In place of the fixity of medium, we can observe a topology at play: a theory drawn from mathematics in which space is understood not as a static field but in terms of properties of connectedness, movement and differentiation. Refracted through the photographic medium, sculpture becomes not a field of fixed points in space, but rather as a fluid set of relations - a continuous sequence of multiple ‘surfaces’, a network of shifting views. This paper will develop a topological account of studio practice through an examination of the work of the contemporary Belgian sculptor Didier Vermeiren (b. 1951). Since the 1980s, Vermeiren has made extensive use of photography in his sculptural practice. By analysing a series of iterations of his work Cariatide à la Pierre (1997-1998), this paper proposes that Vermeiren’s use of photography reveals patterns of connection that expand and complicate the language of sculpture, while also emphasising the broader topology of the artist’s practice as a network of ‘backward glances’ to previous works from the artist’s oeuvre and the art-historical canon. In this context, photography is not simply a method of documentation, but rather a means of revealing the intrinsic condition of sculpture as medium shaped by dynamic patterns of connection and change. In Vermeiren’s work the sculpture-photograph, has a composite identity that exceeds straightforward categories of medium. In their place, we can observe a practice based upon the complex interactions of objects whose ontology is always underpinned by a certain contingency. It is in this fundamental mobility, that the topology of Vermeiren’s practice can be said to rest.
Resumo:
Conventions of the studio presuppose the artist as the active agent, imposing his/her will upon and through objects that remain essentially inert. However, this characterisation of practice overlooks the complex object dynamics that underpin the art-making process. Far from passive entities, objects are resistant, ‘speaking back’ to the artist, impressing their will upon their surroundings. Objects stick to one another, fall over, drip, spill, spatter and chip one another. Objects support, dismantle, cover and transform one another. Objects are both the apparatus of the studio and its products. It can be argued that the work of art is as much shaped by objects as it is by human impulse. Within this alternate ontology, the artist becomes but one element in a constellation of objects. Drawing upon Graham Harman’s Object-Oriented Ontology and a selection of photographs of my studio processes, this practice-led paper will explore the notion of agentive objects and the ways in which the contemporary art studio can be reconsidered as a primary site for the production of new object relationships.
Resumo:
This paper discusses a number of key issues for the development of robust obstacle detection systems for autonomous mining vehicles. Strategies for obstacle detection are described and an overview of the state-of-the-art in obstacle detection for outdoor autonomous vehicles using lasers is presented, with their applicability to the mining environment noted. The development of an obstacle detection system for a mining vehicle is then detailed. This system uses a 2D laser scanner as the prime sensor and combines dead-reckoning data with laser data to create local terrain maps. The slope of the terrain maps is then used to detect potential obstacles.
Resumo:
This paper discusses a Dumber of key issues for the development of robust, obstacle detection systems for autonomous mining and construction vehicles. A taxonomy of obstacle detection systems is described; An overview of the state-of- the-art in obstacle detection for outdoor autonomous vehicles is presented with their applicability to the mining and construction environments noted. The issue of so-called fail-safe obstacle detection is then discussed. Finally, we describe the development of an obstacle detection system for a mining vehicle.
Resumo:
Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.
Resumo:
This exhibition catalogue documents a collaborative art exhibition produced by QUT and Fordham University art students at the Ildiko Gallery in New York, December 6, 2014 to January 25, 2015. The exhibition theme related to the vagaries of communication over long distances, and the kind of creative works that could be generated via a range of media including email, Skype, message in a bottle, and Twitter.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.